Term Test 2

(Author's name here)
January 18, 2022

1. Let any $\varepsilon>0$ be given. Then, pick $k \in \mathbb{N}$ such that $\frac{k}{k}<\varepsilon$. Next, for all integers $1 s_{i} \leq k$, define the closed rectangle $C_{i}:=\left[\frac{i-1}{k^{\prime}}, \frac{i}{k}\right] \times\left[\frac{[-1}{k^{\prime}} \frac{1}{k}\right]$. Then, for all $(x, x) \in\{(t, t): t \in \mathbb{Q} \cap[0,1]\}$, we have $x \in[0,1]$, so there exists some integer isisk such that $\frac{i-1}{k} \leq x \leq \frac{i}{k}$. (This is because this inequality is equivalent to $i-1 \leq k \times s i$, and $k x$ must be between two consecutive integers.) From $\frac{i-1}{k} \leq x \leq \frac{i}{k}$; we get $(x, x) \in\left[\frac{i-1}{k}, \frac{i}{k}\right] \times\left[\frac{i-1}{k}, \frac{i}{k}\right]=C_{i}$. Thus, for all $(x, x) \in\{[t, t): t \in \mathbb{Q} \cap[0,1]\}$, we fond $1 S_{i} \leq_{k}$ such that $(x, x) \in C_{i}$, so the rectangles C_{1}, \ldots, C_{k} cover $\{(t, t): t \in \mathbb{Q} \cap[0,1]\}$, as
required.
Next, the rectangles have a total volume of: $\sum_{i=1} C_{i}=\sum_{i=1}^{k}\left(i \frac{i i}{k}-\frac{i}{k}\right)^{2}=\sum_{i=1}^{k}\left(\frac{1}{k}\right)^{2}=\frac{1}{k}<\varepsilon$.
Thus, for all $\varepsilon>0$, we found finitely many rectangles of total volume less than ε which cover $\{(t, t): t \in \mathbb{Q} \cap\{0,1]\}$, so, this set i has content 0 ,
as required.
2. Let U be amy deer set in \mathbb{R}^{n}, and lat U^{c} be its complement. Then, for all $i \in N$, define $C_{k} \subseteq \mathbb{R}^{n}$ by:
$C_{k}:=\left\{x \in \mathbb{R}^{n}| | x \mid \leq k\right.$, and $|x-y| \sum \frac{1}{k}$ for all $\left.y \in U\right\}$. First, G_{k} is banded since $|x| s_{k}$ for all $x \in C_{k}$: $N_{\text {ext }}, C_{k}$ is the intersection of the following sets:
$C_{k}=\left\{x \in \mathbb{R}^{n}| | x \mid \leq k\right\} \cap \bigcap_{y \in v^{2}}\left\{x \in \mathbb{R}^{n}| | x-y \left\lvert\, 2 \frac{1}{k}\right.\right\}$.
The set $\{x \in \mathbb{R}||x| S k\}$ is closed as a closed ball.
For all $y \in V^{2},\left\{x \in R^{n}| | x y \left\lvert\, \sum \frac{1}{k}\right.\right\}$ is closed es the complement of the gen ball $B_{\frac{1}{k}}(y)$. Thus, each C_{k} is closed as an intersection of closed sets. Since C_{k} is closed and banded, C_{k} is compact. for all $k \in \mathbb{N}$. Next, for all $y \in U^{c}$, and all $K \in N$ we have $\left.|y-y|=0<\frac{1}{k} \right\rvert\,$ so $y \notin C_{k}$. In other words, we have for all k that $V^{c} \subseteq C_{k}^{c}$, so $C_{k} \subseteq V$. Thus, $\bigcup_{k=1}^{\infty} C_{k} \subseteq U$.

Continued on hest pase)
2. (catinued).

Next, for all $x \in U$, since U is open, there exits some radius roo sech that $B_{r}(x) \leqslant U_{i}$ In other words, $|x-y| 2 r$ for all $Y \in U^{c}$. Then, there exists $K \in \mathbb{N}$ such that $\frac{1}{k} \frac{G}{K}$ and such that $k \geqslant$ This gives lark ie, $k \geq \frac{1}{r}$ for all $y \in v^{c}$ go $x \in C$. and $|y-x| \geq+2 \frac{1}{k}$ for all $y \in V^{c}$, so $x \in C_{k}$. Thus, for all $x \in V_{\text {, }}$ there exists $k \in \mathbb{N}$ such that $x \in C_{k}$, so $U \subseteq \bigcup_{k=1}^{\infty} C_{k}$. Overall, we proved $U \subseteq \bigcup_{k=1}^{\infty} C_{k}$ and $\bigcup_{k=1}^{0} C_{k} \subseteq U$, so $U=\bigcup_{k=1}^{\infty} C_{k}$, which is a union of countably many compact sets, as required.
3. Fir an $(x, y)<\mathbb{R}^{2}$, Yet not define $*(x y)=\frac{1}{1+x^{2} y}$.
3. Let us define $f: \mathbb{R}_{(x, y)}^{2} \rightarrow \mathbb{R}$ by $f(x, y)=\frac{1}{1+x^{2}+y^{2}}$.

Let us also define the set $B S \mathbb{R}_{(x, y)}^{2}$ by $B:=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq \mathbb{R}^{2}\right\}$. Then, we want. to find $\int_{p} f$.
First, let us define $g: \mathbb{R}_{(r, \theta)}^{2} \rightarrow \mathbb{R}_{(x, y)}^{2}$ by $g(r, \theta)=(x, y) \theta(r \cos \theta, r \sin \theta)$. Then, we will select bounds on r, θ such that $g(r, \theta) \in B$.
First, we need $x^{2}+y^{2} \leq R^{2}$, scsi:
$(r \cos \theta)^{2}+(r \sin \theta)^{2} \leq R^{2}$
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \leq R^{2}$
$r^{2} \leq R^{2}$
$r \leqslant R$
Thus, let us pick the bounds $O<r<R, \operatorname{Sin}_{c e} \theta$
is an angle, let us also pick the bounds $O<\theta<2_{\pi}$.
Then, let us define the rectangle $A \subseteq \mathbb{R}_{(r, \theta)}^{2}$ by $A:=(0, R) \times(0,2 \pi)$. Under the bounds picked above, $g(A)$ is approximately B_{1} and $g l_{A}$ is $\underset{\text { (cativued on next pope) }}{H_{1}}$
3. (Continued)

Next, let us compute deft $g^{\prime}(r, \theta)$ for all $(r, \theta) \in A$: $\operatorname{det}^{\prime}=\operatorname{det}\left(\begin{array}{ll}\frac{\partial}{\partial r} r \cos \theta & \frac{\partial}{\partial \theta} r \cos \theta \\ \frac{\partial}{\partial r} r \sin \theta & \frac{\partial}{\partial \theta} r \sin \theta\end{array}\right)$

$$
=\operatorname{det}\left(\begin{array}{cc}
\cos \theta & r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right)
$$

$$
=\cos \theta \cdot r \cos \theta-(-r \sin \theta) \cdot \sin \theta
$$

$$
=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)
$$

$$
=r
$$

Since $r>0$ for all $(r, \theta) \in A$, we get $\operatorname{det} g^{\prime} \neq 0$, as required. Thus, we can apply Change of Variables:

$$
\int_{B} f=\int_{g(A)} f
$$

$$
=\int_{A}(f \circ g)\left|\operatorname{det} g^{\prime}\right|
$$

$$
=\int_{A}^{1} f(r \cos \theta, r \sin \theta) \cdot r
$$

$$
=\int_{A}^{A} \frac{1}{\left(1(r \cos \theta)+(r \sin \theta)^{2}\right.} \cdot r
$$

$$
=\int_{A} \frac{r}{1+r^{2}}
$$

3. (Cartinued)

$$
\begin{aligned}
\int_{B} f & =\int_{A 1+r^{2}} \frac{r}{1} \\
& =\int_{0}^{\pi}\left(\int_{0}^{R} \frac{r}{1+r^{2}} d r\right) d \theta \quad \text { (Fubini) }
\end{aligned}
$$

We will use the MATI57 u-substitution $u=1 \mathrm{r}^{2}$, with $\frac{d n}{d r}=2 r$, so $d u=2 r d r i$
$\int_{\beta} f=\int_{0}^{2 \pi}\left(\int_{0}^{R} \frac{1}{2(1+2)^{2}} \cdot 2 r d r\right) d \theta$
$=\int_{0}^{2 \pi}\left(\int_{r=0}^{r=R} \frac{1}{2 u} d u\right) d \theta$

$$
=\left.\int_{0}^{2 \pi} \frac{1}{2} \ln |u|\right|_{r=0} ^{r=R} d \theta
$$

$$
=\int_{0}^{2 \pi} \frac{1}{2} \ln \left|1+r^{2}\right|_{r=0}^{r=R} d \theta
$$

$$
=\int_{0}^{2 \pi} \frac{1}{2}\left(\ln \left(1+R^{2}\right)-\ln (1)\right) d \theta
$$

$$
=\int_{0}^{2 \pi} \frac{1}{2} \ln \left(1+R^{2}\right) d \theta
$$

$$
=\left.\frac{1}{2} \ln \left(1+R^{2}\right) \theta\right|_{0} ^{2 \pi}
$$

$$
=\pi \ln \left(1+R^{2}\right)
$$

4. Let $U:=\left\{B_{1}(x)\right\}_{x \in \mathbb{R}^{n}}$ bey the open cover of \mathbb{R}^{n} using open balls of radius 1 centred at every point in \mathbb{R}^{n}. Also, let $\Phi=\left\{\varphi_{i}\right\}_{i \in \mathbb{R}^{n}}$ be a partition of unity of \mathbb{R}^{n} subordinate to U. Then, to show that f is integrable on \mathbb{R}^{n}, it suffices to show that f is (U, Φ)-integrable, meaning that $\sum_{i=1}^{\infty} \int_{i}|f|$ converges, For all $k \in \mathbb{N}$, consider the finite sum $\sum_{i=1}^{k} \int \varphi_{i}|f|$. first, since Φ is subordinate to U_{1} we have for all $1 S_{i} S_{k}$ that supp $\varphi_{i} \leqslant B_{1}\left(x_{i}\right)$ for some $x_{i} \in \mathbb{R}^{n}$. Since each ball $B_{1}\left(x_{i}\right)$ is bounded, each support supper is also bounded, so the finite union $\operatorname{lo}_{i=1}^{k}$ supp φ_{i} is also bounded. Then, we can pick a rectangle $R S \mathbb{R}^{n}$ such that $\bigcup_{i=1}^{k} \operatorname{supp} e_{i} \subseteq R$. In other words, for all $1 S_{i} S_{k}$, we have that wi is 0 outside R.R
(Continued on next page)

$$
\begin{aligned}
& \text { 4. (continued) } \\
& \text { Thus, when we consider } \sum_{i=1}^{k} \text { fleiffl, we only need } \\
& \text { to integrate on } R_{1} \text { so. } \\
& \sum_{i=1}^{k} \int_{i}|F|=\sum_{i=1}^{k} \int_{R} \varphi_{i}|f| \\
& \left.=\int_{R} \sum_{i=1}^{k} \varphi_{i}|f| \quad \text { (since } \int_{R} f_{1}+\int_{R} f_{2}=\int_{R}\left(f_{1}+f_{2}\right)_{i}\right)_{i} \\
& \leq \int_{R} \sum_{i=1}^{\infty} \varphi_{i}|f| V \\
& =\int_{R}|f| \quad \text { (since } \Phi \text { has "sum }=1 " \\
& \text { property: } \sum_{i=1}^{\infty} \mu_{i}(x)=1 \text {) } \\
& =\int_{R} f \quad(f=|f| \text { since } f \text { is nonnegative) } \\
& \begin{array}{c}
\qquad M \\
\text { Thus, } \sum_{i=1}^{k} \int \varphi_{i}|f| \leq M \text { for all } K \in \mathbb{N} \text {, so the infinite }
\end{array} \\
& \text { series } \sum_{i=1}^{\infty} \int_{i}|f| \text { land is at matt an u. } \\
& \text { conclude that f } \begin{array}{l}
\text { just because this is bounded doesn't } \\
\text { mean it converges yet. you also need }
\end{array} \\
& \text { NT-integrable, as monotone }
\end{aligned}
$$

5. First, b h is a linear map represented by the matrix $M_{h}=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$. Since dot $M_{h}=(a(1)-(1)(1)=-1$, we find that h is bjective. Moreover, we can use a bookkeeping matrix to find M_{h}^{-1} :

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 1
\end{array}\right]
$$

\downarrow
$\left[\begin{array}{ll|ll}0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right] \quad$ (Swap the rows)
$\left[\begin{array}{ll|rr}1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]^{\vee} \quad$ (Subtract Raw 2 from Raw 1)
Thus, $M_{h}^{-1}=\left[\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right]$. This matrix represents the inverse map h^{-1}, so $h^{-1}(x, y)=(-x+y, x)$.
Next, let B be any Jordan measurable set in \mathbb{R}^{2}. Then, we need to show that $h^{-1}(B)$ is also Jordan-measurable.
First, B is bounded, so B is contained in same rectangle $\left(a_{1}, b_{1}\right) \times\left(a_{n}, b_{2}\right) \subset \mathbb{R}^{2}$.
(Catinued on nest page)

5. (Continued)

Then, for all $\left.(x, y) \in B_{1} \subseteq\left(a_{1}, b_{1}\right)\right)_{x}\left(a_{i}, b_{2}\right)$, wee have
$h_{1}^{-1}(x, y)=-x+y<-a_{1}+b_{2}$, as wells as $\left.h_{1}^{-1}(x, y)\right)_{-b_{1}, a_{2}}$
Thus, $h_{1}^{-1}(x, x) \in\left(-a_{1}+b_{2}, h_{1}+a_{2}\right)$. Similarly,
$h_{2}^{-1}(x, y)=x \in\left(a_{1}, b_{1}\right)$. Overall, this shans that $h^{-1}(b)$
is bounded.
Next, consider any $\left(x_{i}^{\prime} y\right)$ inside $\partial\left(h^{*}(B)\right)$, the boundary of $h^{-1}(B)$. Then, we will shaw that $\left(x_{i}^{\prime} y^{\prime}\right) \in h^{-1}(\partial B)$. Suppose this is not the case. Then, since h^{-1} is

$\left(x^{\prime} y^{\prime}\right) \in h^{-1}(e x+B)$. If $\left(x^{\prime}, y^{\prime}\right) \in h^{-1}($ int $B)$, then $h^{-1}($ int $B)$ is open since int ∂B is open and h is catinutes, So $h^{-1}($ int $B)$ is an open neighborhood around (x^{\prime}, y^{\prime}) contained in $h^{-1}(B)$. Similar l y, if $\left(x^{\prime}, y^{\prime}\right)=h^{-1}(x)+B$, then $h^{-1}(e x+B)$ is an open neighbourhood around $\left(x^{\prime}, y\right)$ contained outside $h^{-1}(B)$. Either may, $\left(X^{\prime}, y^{\prime}\right) \notin\left(h^{-1}(B)\right.$ a contradiction. Thus, by contradiction, $\left(x^{\prime} y^{\prime}\right) \in f\binom{(2)}{(a)}$ for all $\left(x^{\prime}, y^{\prime}\right) \in \partial\left(h^{-1}(B)\right.$, so $\partial\left(h^{-1}(B) S h^{-1}(\partial B)\right.$.
(continued an next page)

5. (Continued)

Then, to shaw that $\partial\left(h^{-1}(B)\right)$ has measwe 0 , it suffices to show that $h^{-1}(\partial B)$ has measure O. Let anyreco babe given. Then, since ∂B has measure $O_{\text {, cover }} A B$ with open rectangles carnally many
of total volume less than $\frac{5}{3}$. Also, we can require that these rectangles have a shorter x-length than y-length, in other nards, if a rectangle is of the form $\left(c_{1}, d_{1}\right) \times\left(c_{2}, d_{2}\right)$, we can require $d_{1}-c_{1}<d_{2}-c_{2}$. If a rectangle dos nat satisfy this, we can simply split it:

tet us express the open cover of ∂B as $\bigcup_{i=1}^{\infty}\left(\left(c_{1}^{i}, d_{1}^{i}\right) \times\left(c_{2}^{i}, d_{2}^{i}\right)\right)$, which also gives use
$h^{*}\left({ }^{i=} B\right) \geqslant \sum_{i=1}^{\infty} h^{-1}\left(\left(c_{i}, d_{i}\right) \times\left(c_{i}^{i},\left(d_{2}^{i}\right)\right)\right.$ (tinned on text pace)
5. (Continued)

Then, we claim that the rectangles:

$$
\bigcup_{i=1}^{\infty}\left(\left(c_{2}^{i}-d_{1}^{i}, d_{2}^{i}-c_{1}^{i}\right) \times\left(c_{1}, d_{1}^{i}\right)\right)
$$

cover $h^{-1}(\partial B)_{\text {i }}$ Indeed, it suffices to show

$$
\left(c_{2}^{i}-d_{1}^{i}, d_{2}^{i}-c_{1}^{i}\right) \times\left(c_{1}^{i}, d_{1}^{i}\right) \geqslant h^{-1}\left(\left(c_{1}^{i}, d_{1}\right) \times\left(c_{1}^{i}, d_{i}^{i}\right)\right.
$$

because of (t). This is true since, for all $\left(x^{\prime}, y^{\prime}\right) \in\left(c_{1}^{i}, d_{i}^{i}\right) \times\left(c_{n}^{i}, d_{i}^{i}\right)$, we have:

$$
\left.\begin{array}{ll}
h_{1}^{-1}\left(x^{\prime}, y^{\prime}\right)=y^{\prime}-x^{\prime} L d_{1}^{i}-c_{1}^{i}, & \left.h_{1}^{-1}\left(x^{\prime}, y^{\prime}\right)>d_{1}^{i}, d_{1}^{i}\right) \\
h_{2}^{-1}\left(x^{\prime}, y^{\prime}\right)=x^{\prime} \in\left(c_{1}^{i}, d_{1}^{i}\right), ~ d s ~ r e q u i r e d, ~
\end{array}\right)
$$

Total volume of rectangles is: so we get:

$$
\begin{aligned}
& \sum \sum v d\left(\left(c_{2}^{i}-d_{1}^{i}, d_{i}^{i}-c_{1}^{i}\right) \times\left(c_{1}^{i}, d_{i}^{i}\right){ }^{\left.h_{1}^{-1}\left(x_{1},\right)\right) \in\left(d_{d}^{i} d_{1}^{i},\right.}\right. \\
& \left.=\sum_{i=1}^{\infty}\left(\left(d_{2}^{i}-c_{0}^{i}\right)+\left(d_{1}^{i}-i_{1}\right)\right) t d_{1}^{i}-c_{1}^{i}\right) \\
& S \sum_{i=1}^{\infty}\left(\left(d_{2}^{i}-c_{1}^{i}\right)+\left(d_{1}^{i}-c_{2}^{i}\right)\right)\left(d_{1}^{i}-c_{1}^{i}\right) \\
& =\sum_{i=1}^{\infty} 2 v d\left(\left(c_{1}^{i}, d_{1}^{i}\right) \times\left(c_{2}^{i}, d_{2}^{i}\right)\right) \\
& \angle 2 \cdot \varepsilon_{2}=\varepsilon \\
& \text { (Continued onvext pres) }
\end{aligned}
$$

5. (Continued)

Thus, we covered $h^{-1}(\partial B)$ with countabyy many rectongles with volume $L \varepsilon$, so $t^{\prime \prime}(\partial a)$
is meague d, $50 \quad \partial\left(h^{-1}(A) \subset h^{-1}(\partial B)\right.$ is neasure $O \cdot h^{-1}(B)$ is also bounded, so $h^{-1}(B)$ is Pordan-measurable.

$$
\text { Next, } h^{-1} \text { is } H \text {, andis }
$$

$$
\operatorname{det}\left(h^{-1}\right)^{\prime}=\operatorname{det} h_{n}^{-1}=\operatorname{det}\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]=1 \neq 0 \text {, so }
$$

we can upply ohange of variable:

$$
\operatorname{vol}\left(h^{-1}(B)\right)=\int_{\substack{k(B) \\ N R=\operatorname{Roct}}} X^{-1}
$$

$$
C R=\text { Rectarge caering } B(D)
$$

$$
=\int_{R}\left(X_{h^{\prime}(R)}, h^{-1}\right)\left|\operatorname{det} h^{-1}\right|
$$

$$
\begin{aligned}
& =\int_{R}^{0}\left(x_{B} \text { fec } \cdot|-1| \quad \begin{array}{l}
\text { Since } x \in B \text { if fand aly; } \\
\left.=h^{-1}(x) \in h^{-}(B)\right)
\end{array}\right. \\
& =x_{n}
\end{aligned}
$$

$$
=\int_{R} x_{B}
$$

so vol $\left(h^{-1}(B)=\operatorname{vol}(B)\right.$, (B), as required.

Notes on Intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions. (Note: This section was not submitted for grading.)

1. First, we notice that the given set $\{(t, t): t \in \mathbb{Q} \cap[0,1]\}$ is a subset of the diagonal joining the points $(0,0)$ and $(1,1)$. This diagonal is a 1 -dimensional set in the 2 -dimensional space \mathbb{R}^{2}, which motivates us to prove that the diagonal has content 0 . To do this, we must cover the diagonal with finitely many rectangles with arbitrarily small total volume. However, since it is a diagonal and it is not horizontal or vertical, we cannot simply cover it with one very thin rectangle. Instead, the solution is to cover it with tiny squares. Since the area of a square decreases at a quadratic rate as its side length decreases, this allows us to decrease the total volume by using a larger number of smaller squares. Then, we can make the total volume arbitrarily small, as required.
2. Recall that, when we proved Partitions of Unity for open sets U in class, we proved it by expressing U as a union of a sequence of strongly nested compact sets. We defined these compact sets by:

$$
C_{k}:=\left\{x \in \mathbb{R}^{n}:|x| \leq k \text { and } \operatorname{dist}\left(x, U^{c}\right) \geq \frac{1}{k}\right\}
$$

Intuitively, the condition " $\operatorname{dist}\left(x, U^{c}\right) \geq \frac{1}{k}$ " makes the compact sets stay inside U while covering points that are arbitrarily close to the boundary of U, so the union eventually covers the entire set U. Moreover, the condition " $|x| \leq k$ " is needed so that C_{k} is bounded.
For the test question, we no longer need the compact sets to be strongly nested, but the same construction still works.
3. Similarly to Assignment 10 Question 2, this question heavily involves the quantity $x^{2}+y^{2}$, which motivates us to apply Change of Variables with a polar coordinate transformation. After some computations, we reach a step whre we must evaluate $\int_{0}^{R} \frac{1}{1+r^{2}} r d r$. To do this, we apply the standard u-substitution $u=1+r^{2}$, with $d u=2 r d r$. After evaluating this integral, we are done.
4. As the question suggests, we begin with a partition of unity $\Phi=\left\{\varphi_{i}\right\}_{i \in \mathbb{N}}$ subordinate to some open cover \mathcal{U} of \mathbb{R}^{n}. Then, to show that f is NT-integrable, we need to show that $\sum_{i=1}^{\infty} \int \varphi_{i}|f|$ converges. Since we are given that $\int_{R} f \leq M$ for all rectangles R in \mathbb{R}^{n} no matter how large R is, we suspect that $\sum_{i=1}^{\infty} \int \varphi_{i}|f| \leq M$. Since the given information only applies for bounded R, we need to focus our attention on finite sums $\sum_{i=1}^{k} \int \varphi_{i}|f|$. Here, it is important that the open sets inside \mathcal{U} are bounded: That way, the support of each φ_{i} is also bounded, and we only need to integrate along a bounded set to evaluate $\sum_{i=1}^{k} \int \varphi_{i}|f|$. This lets us obtain $\sum_{i=1}^{k} \int \varphi_{i}|f| \leq M$, so the finite sums are bounded above by M. Finally, since each term $\int \varphi_{i}|f|$ is nonnegative, we know that the finite sums $\sum_{i=1}^{k} \int \varphi_{i}|f|$ are nondecreasing as k increases, so the infinite series $\sum_{i=1}^{\infty} \int \varphi_{i}|f|$ converges.
(Note: On the test, I made a minor error where I forgot to mention that the finite sums are nondecreasing. This is an important condition for the infinite series to converge.)
5. First, we prove that $g^{-1}(B)$ is Jordan-measurable, which requires us to prove that the boundary of $g^{-1}(B)$ has measure 0 . Intuitively, g^{-1} maps the boundary of B onto the boundary of $g^{-1}(B)$. Then, since the boundary of B has measure 0 , we could cover that boundary with rectangles with arbitrarily small total volume, then apply g^{-1} to those rectangles to cover the boundary of $g^{-1}(B)$. The problem is that the rectangles get mapped to parallelograms, not new rectangles. To solve
this, we find bounds for these small parallelograms so that we can cover them with rectangles that are still small enough.
Once we prove that $g^{-1}(B)$ is also Jordan-measurable, we finish by applying Change of Variables. This application of Change of Variables is motivated by the fact that we need to "integrate over $g^{-1}(B)^{\prime \prime}$ to evaluate its volume.

