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Summaries and Notes on Intuition

This solution set consists of handwritten solutions that I wrote during the test. Unfortunately, my
solutions are quite messy because they were written under time pressure. Hence, before I present the
handwritten solutions, I will summarize the key ideas for each solution, and I will also discuss some
methods to approach each problem and motivate each solution. (Note: This section was not submitted
for grading.)

1. For this question, we had to use all scale fidelity to prove that f is surjective, using the same
method that was done in lecture (while proving the Inverse Function Theorem). The key idea is
to use a recursive sequence {xn}n∈N to find better approximations of x over time. Since all scale
fidelity says that f(xn)− f(xn−1) is close to xn − xn−1, and since we want f(xn) to be close to
y, it is reasonable to pick xn such that y − f(xn−1) = xn − xn−1. This gives us our recursive
definition xn = xn−1 + (y − f(xn−1)).
Now, we want our sequence {xn}n∈N to better approximate x over time, so these terms should
also get closer to each other over time. This motivates us to show that |xn − xn−1| decreases
quickly over time. The naive approach of rewriting a single recursion xn = xn−1 + (y− f(xn−1))
as xn − xn−1 = y − f(xn−1) does not work because we do not know, a priori, how well f(xn−1)
actually approximates y. Instead, we can subtract consecutive recursive relations. The left-hand
side is precisely xn − xn−1, and the right-hand side is (xn−1 − xn−2) − (f(xn−1) − f(xn−2)).
Directly applying all scale fidelity, the right-hand side can be bounded to have a magnitude of at
most 1

7 |xn−1 − xn−2|. Thus, |xn − xn−1| ≤ 1
7 |xn−1 − xn−2|, so the distances between consecutive

terms experiences exponential decay. This allows us to prove that {xn}n∈N is Cauchy (with some
technicalities involving geometric series), so it converges to some limit x.
Next, recall the ”naive step” that we tried above: xn − xn−1 = y− f(xn−1). Now that we know
that |xn − xn−1| experiences exponential decay, this step becomes helpful because we discover
that

∣∣y − f(xn−1)
∣∣ also experiences exponential decay. As a result, f(xn) must approach y as

x→∞. Finally, since f is continuous, it follows that:

f(x) = f( lim
n→∞

xn) = lim
n→∞

f(xn) = y,

as required.

2. This question asks us to prove Spivak’s Theorem 2-8. We can prove it using the ”axis crawl”
solution presented during lecture. In other words, for all a + h near a, we want to travel from a
to a+h in n steps, where we travel along the xk-direction during the kth step. We formalize this
idea by defining the points bk := (a1 + h1, . . . , ak + hk, ak+1, . . . , an) for all indices 0 ≤ k ≤ n;
the kth step travels along the xk-direction from bk−1 to bk.
Next, we are interested in how much f changes at each step. At the kth step, since this step of
the axis crawl only travels along xk-direction, we can apply the MAT157 Mean Value Theorem
for the kth partial derivative. This gives us:

f(bk)− f(bk−1) = hk
∂f(ck)

∂xk
, (∗)

where ck is between bk and bk−1. Since f has continuous partial derivatives, the term ∂f(ck)
∂xk

above should approach ∂f(a)
∂xk

as h→ 0.
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Next, we shall guess that the differential of f at a is the linear map:

L(h) :=

n∑
i=1

∂f(a)

∂xi
hi,

as suggested by Spivak’s Theorem 2-7. We can verify this by verifying the definition of the
differential:

lim
h→0

∣∣f(a+ h)− f(a)− L(h)
∣∣

|h|
= 0.

Our axis crawl allows us to split the numerator into:∣∣(f(bn)− f(bn−1)) + (f(bn−1)− f(bn−2)) + · · ·+ (f(b1)− f(b0))− L(h)
∣∣ .

Since L is linear, we can split L(h) into its n directions to split the numerator further:∣∣(f(bn)− f(bn−1)− L(0, . . . , hn)) + · · ·+ (f(b1)− f(b0)− L(h1, . . . , 0))
∣∣ .

The rest of the solution is computational. We apply (∗), then the observation limh→0
∂f(ck)
∂ck

=
∂f(a)
∂xk

gives us the final push to prove that L is the differential of f at a.
As a final note, my handwritten solution contains several distracting justifications that ”we are
close enough to a to do this and that”. It should be safe to ignore such remarks while reading
the solution.

3. This question is Question 5 from Assignment 1. The solution is available in the Assignment 1
Solution Set on the class website, and my handwritten solution here is very similar, so I will simply
give a quick review.
First, for all x /∈ [0, 1]− A, there are two ways for a point x to be outside [0, 1]− A: Either x is
outside [0, 1], or x is inside A. If x is outside [0, 1], then x is far away from the set A ⊆ [0, 1], so
x is in the exterior of A. If x is inside A, then it is inside one of the open intervals that comprise
A, so x is in the interior of A. Either way, x is not in the boundary of A.
Next, for all x ∈ [0, 1] − A, every open interval around x contains the point x outside A. Since
the rationals are dense, we can argue that every open interval around x also contains a rational
number in [0, 1]. Such a number must be in A, so every open interval contains points inside and
outside A. Thus, x is in the boundary of A.
These steps, when combined, prove that [0, 1]−A is the boundary of A, as required.

4. This question is new. To prove that f is integrable, we could find partitions whose lower sums and
upper sums approach each other so that the lower integral and upper integral of f are equal. When
in doubt, it is a good idea to pick the partition using uniformly spaced cutpoints {0, 1

n ,
2
n , . . . , 1}

to obtain a simple partition. This partition has subrectangles of the form:

Si,j = [
i

n
,
i+ 1

n
]× [

j

n
,
j + 1

n
].

Note that all subrectangles have the same volume of 1
n2 .

Since f is also relatively simple, we obtain the following cases for Si,j :

i) Si,j could be completely above the diagonal y = x, so f(x, y) = 0 for all (x, y) ∈ Si,j .

Then, mSi,j (f) = MSi,j (f) = 0. There turn out to be (n−1)n
2 such rectangles. (This is Case

1 in the handwritten solution.)

3



ii) Si,j could touch the diagonal y = x, so f(x, y) takes values of both 0 and 1 as (x, y) ranges
across Si,j . Then, mSi,j (f) = 0 and MSi,j (f) = 1. There turn out to be n+(n−1) = 2n−1
such rectangles, so the proportion of all n2 rectangles covered by this case is 2n−1

n2 = 2
n −

1
n2 .

This case is the only source of discrepancy between the lower and upper sums of f , so it is
good news that it contains few rectangles. (This is Cases 2 and 3 in the handwritten solution.)

iii) Si,j could be completely below the diagonal y = x, so f(x, y) = 1 for all (x, y) ∈ Si,j . Then,

mSi,j (f) = MSi,j (f) = 1. There turn out to be (n−2)(n−1)
2 such rectangles. (This is Case 4

in the handwritten solution.)

Combining these cases, the rest of the solution computes the upper and lower sums:

U(f, P ) =
∑
S∈P

vol(S)MS(f) =
1

n2

∑
S∈P

MS(f), L(f, P ) =
∑
S∈P

vol(S)mS(f) =
1

n2

∑
S∈P

mS(f).

Then, it finds that both the upper and lower sums converge to 1
2 as n→∞, giving us the chain

of inequalities:
1

2
≤ L(f) ≤ U(f) ≤ 1

2
.

We conclude that L(f) = U(f) = 1
2 , so f is integrable (with

∫
[0,1]×[0,1] f = 1

2)), as required.
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