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1. (a) We will show that Stokes’ theorem fails if the manifold is not compact, yet that it holds again
if the form has a compact support.
First, consider the 1-dimensional manifold-without-boundary M := (0, 1) ⊆ R1

x, equipped with
the standard orientation of R1, and consider the 0-form ω(x) = x on M . We can show that
M has no boundary by showing that it satisfies definition (M) for manifolds-without-boundary.
Indeed, for all p ∈ M , we can pick U := (0, 1) 3 p, V := (0, 1) ⊆ R1, and the diffeomorphism
h : U → V defined by h(x) = x, and we obtain that h(U ∩M) = h((0, 1)) = (0, 1) = V ∩R1, as
desired. Next, M is not compact because it is not closed. Also, we have that

∫
∂M ω = 0 because

M is without boundary. However,
∫
M dω =

∫
M dx =

∫ 1
0 dx = 1 6= 0. Thus, for our example,∫

∂M ω 6=
∫
M dω, so Stokes’ theorem fails if the manifold is not compact, as desired.

Next, suppose that the oriented k-dimensional manifold-with-boundary M is not compact, but
the (k − 1)-form ω has compact support. Then, we will show that Stokes’ theorem holds again.
Our proof will closely follow the proof of the regular Stokes’ theorem presented in lecture.
To begin, consider the open cover of M formed by open subsets of M that can be covered by
“good k-cubes” on M (i.e., singular k-cubes which are orientation preserving, smooth, 1-1, and
have differentials representing 1-1 linear maps). Then, since suppω is compact, we can find a
finite subcover {U1, . . . , Um} of suppω, and we can obtain a finite partition of unity {ϕ1, . . . , ϕ`}
over suppω subordinate to the finite subcover.
Next, we proved in lecture that for all (k−1)-forms η on M , if the support of η can be covered by a
single “good cube”, then Stokes’ theorem is true for η:

∫
M dη =

∫
∂M η. The proof did not depend

on M being compact, so the statement continues to be true when M is not compact. In particular,
for all 1 ≤ i ≤ `, since supp(ϕi ·ω) is contained in suppϕi, which is contained in some Uj , which
is covered by a “good cube”, it follows that

∫
M d(ϕi · ω) =

∫
∂M ϕi · ω. Moreover, whenever we

use the summation
∑`

i=1, this is a finite summation, so we are allowed to move the summation in

and out of integrals. Finally, we have at all points p ∈M that (
∑`

i=1 ϕi(p)−1)ω(p) = 0 because

either p ∈ suppω, in which case we get
∑`

i=1 ϕi(p) = 1 from the partition of unity, or p /∈ suppω,

in which case ω(p) = 0. In other words,
∑`

i=1 ϕi · ω = ω. Similarly,
∑`

i=1 ϕi · dω = dω. Then,

2



we obtain: ∫
∂M

ω =

∫
∂M

∑̀
i=1

ϕi · ω

=
∑̀
i=1

∫
∂M

ϕi · ω

=
∑̀
i=1

∫
M
d(ϕi · ω)

=
∑̀
i=1

∫
M

(dϕi · ω + ϕi · dω)

=
∑̀
i=1

∫
M
dϕi · ω +

∑̀
i=1

∫
M
ϕi · dω

=

∫
M
d(
∑̀
i=1

ϕi) · ω +

∫
M

∑̀
i=1

ϕi · dω

=

∫
suppω

d(
∑̀
i=1

ϕi) · ω +

∫
M−suppω

d(
∑̀
i=1

ϕi) · ω +

∫
M

∑̀
i=1

ϕi · dω

=

∫
suppω

d(1) · ω +

∫
M−suppω

d(
∑̀
i=1

ϕi) · 0 +

∫
M
dω

=

∫
suppω

0 · ω + 0 +

∫
M
dω

= 0 + 0 +

∫
M
dω.

Therefore,
∫
∂M ω =

∫
M dω, so Stokes’ theorem holds if ω has compact support, as required.

(b) We will show that the integral of an exact form on a compact oriented manifold with no
boundary vanishes, and we will give a counterexample where the manifold is not compact.
First, suppose we are given a compact oriented k-dimensional manifold M with no boundary, and
suppose we are given an exact form dω ∈ Ωk(M). Then, since M has no boundary,

∫
∂M ω = 0.

Thus, since M is compact, we can apply Stokes’ theorem to obtain
∫
M dω =

∫
∂M ω = 0, as

desired.
Next, if M is not compact, consider the same counterexample as above: M = (0, 1) ⊆ R1

x and
ω(x) = x. Then, M has no boundary, but the integral of the exact form dω on M does not
vanish because

∫
M dω =

∫ 1
0 dx = 1 6= 0, as required.
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2. We are given a 2-dimensional manifold M := {(x, y, z) : 4x2 + y2 + 4z2 = 4 & y ≥ 0} ⊆ R3.
We are also given the coordinate map α(u, v) = (u, 2(1 − u2 − v2)1/2, v) from the open ball
B1(0) ⊆ R2 to M − ∂M . We also orient M so that α is orientation preserving, and we give ∂M
the induced orientation. Finally, we are given ω = ydx+ 3xdz ∈ Ω1(M).
(a) Given any point p = (x0, 0, z0) of ∂M = {(x, 0, z) : x2 + z2 = 1}, we will write a tangent
vector that defines the induced orientation of ∂M .
First, let us define the coordinate map hp : (−π

2 ,
π
2 )× [0, 1)→M by:

hp(θ, y) =

(√
1− y2

4
(x0 cos θ − z0 sin θ), y,

√
1− y2

4
(z0 cos θ + x0 sin θ)

)
.

We can check that hp(θ, y) ∈M because y ≥ 0 and:

= 4

(√
1− y2

4
(x0 cos θ − z0 sin θ)

)2

+ y2 + 4

(√
1− y2

4
(z0 cos θ + x0 sin θ)

)2

= 4(1− y2

4
)((x0 cos θ − z0 sin θ)2 + (z0 cos θ + x0 sin θ)2) + y2

= (4− y2)(x20(cos2 θ + sin2 θ) + z20(cos2 θ + sin2 θ)) + y2

= (4− y2)(x20 + z20) + y2

= (4− y2) · 1 + y2 (Since (x0, 0, z0) ∈ ∂M)

= 4.

Also, hp is smooth, and hp covers p because hp(0, 0) = (x0, 0, z0) = p. Finally, hp has the smooth
inverse map:

h−1p (x, y, z) = (arcsin(
zx0 − xz0√

1− y2

4

), y),

because we can compute that:

(h−1p ◦ hp)(θ, y) = h−1p

(√
1− y2

4
(x0 cos θ − z0 sin θ), y,

√
1− y2

4
(z0 cos θ + x0 sin θ)

)

=

(
arcsin

(√
1− y2

4 (z0 cos θ + x0 sin θ)x0 −
√

1− y2

4 (x0 cos θ − z0 sin θ)z0√
1− y2

4

)
, y

)

= (arcsin((z20 + x20) sin θ), y)

= (arcsin(1 · sin θ), y) (Since (x0, 0, z0) ∈ ∂M)

= (θ, y), (Since θ is restricted to (−π
2
,
π

2
))
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and we can also compute that:

(hp ◦ h−1p )(x, y, z) = hp(arcsin(
zx0 − xz0√

1− y2

4

), y)

=

(√
1− y2

4
(x0 cos(arcsin(

zx0 − xz0√
1− y2

4

))− z0 sin(arcsin(
zx0 − xz0√

1− y2

4

))), y,

=

√
1− y2

4
(z0 cos(arcsin(

zx0 − xz0√
1− y2

4

)) + x0 sin(arcsin(
zx0 − xz0√

1− y2

4

)))

)

=

(√
1− y2

4
(x0

√
1− y2

4 − (zx0 − xz0)2√
1− y2

4

− z0
zx0 − xz0√

1− y2

4

), y,

=

√
1− y2

4
(z0

√
1− y2

4 − (zx0 − xz0)2√
1− y2

4

+ x0
zx0 − xz0√

1− y2

4

)

)

=

(
x0

√
1− y2

4
− (zx0 − xz0)2 − z0(zx0 − xz0), y,

= z0

√
1− y2

4
− (zx0 − xz0)2 + x0(zx0 − xz0)

)

=

(
x0

√
1− 4− 4x2 − 4z2

4
− (zx0 − xz0)2 − z0(zx0 − xz0), y,

= z0

√
1− 4− 4x2 − 4z2

4
− (zx0 − xz0)2 + x0(zx0 − xz0)

)
(Since (x, y, z) ∈M)

= (x0
√

(x2 + z2) · 1− (zx0 − xz0)2 − z0(zx0 − xz0), y,

= z0
√

(x2 + z2) · 1− (zx0 − xz0)2 + x0(zx0 − xz0))

= (x0

√
(x2 + z2)(x20 + z20)− (zx0 − xz0)2 − z0(zx0 − xz0), y,

= z0

√
(x2 + z2)(x20 + z20)− (zx0 − xz0)2 + x0(zx0 − xz0)) (Since (x0, 0, z0) ∈ ∂M)

= (x0

√
x2x20 + 2xx0zz0 + z2z20 − z0(zx0 − xz0), y,

= z0

√
x2x20 + 2xx0zz0 + z2z20 + x0(zx0 − xz0))

= (x0(xx0 + zz0)− z0(zx0 − xz0), y, z0(xx0 + zz0) + x0(zx0 − xz0))
= (x(x20 + z20), y, z(x20 + z20))

= (x, y, z).

Next, we will check that hp is orientation preserving. Let us pick any (u, v) ∈ B1(0) and any
(θ, y) ∈ (−π

2 ,
π
2 )× [0, 1) such that α(u, v) = hp(θ, y). (Note: We know that the images of α and

hp intersect because hp(θ, y) has a positive y-coordinate whenever y is positive.) Then, since α
is orientation preserving, we have that the following basis for Tα(u,v)(M) has positive orientation
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on M :

= (α∗((u, v), (1, 0)), α∗((u, v), (0, 1)))

= ((α(u, v), α′(u, v) ·

(
1
0

)
), (α(u, v), α′(u, v) ·

(
0
1

)
))

= ((α(u, v),
∂α(u, v)

∂u
), (α(u, v),

∂α(u, v)

∂v
))

= ((α(u, v),

 ∂
∂uu

∂
∂u2
√

1− u2 − v2
∂
∂uv

), (α(u, v),

 ∂
∂vu

∂
∂v2
√

1− u2 − v2
∂
∂vv

))

= ((α(u, v),

 1
−2u√

1−u2−v2
0

), (α(u, v),

 0
−2v√

1−u2−v2
1

)).

Next, consider the following basis for Thp(θ,y)(M):

= ((hp)∗((θ, y), (1, 0)), (hp)∗((θ, y), (0, 1)))

= ((hp(θ, y), h′p(θ, y) ·

(
1
0

)
), (hp(θ, y), h′p(θ, y) ·

(
0
1

)
))

= ((hp(θ, y),
∂hp(θ, y)

∂θ
), (hp(θ, y),

∂hp(θ, y)

∂y
))

= ((hp(θ, y),


∂
∂θ

√
1− y2

4 (x0 cos θ − z0 sin θ)
∂
∂θy

∂
∂θ

√
1− y2

4 (z0 cos θ + x0 sin θ)

), (hp(θ, y),


∂
∂y

√
1− y2

4 (x0 cos θ − z0 sin θ)
∂
∂yy

∂
∂y

√
1− y2

4 (z0 cos θ + x0 sin θ)

))

= ((hp(θ, y),


−
√

1− y2

4 (z0 cos θ + x0 sin θ)

0√
1− y2

4 (x0 cos θ − z0 sin θ)

), (hp(θ, y),


−y

4

√
1− y2

4

(x0 cos θ − z0 sin θ)

1
−y

4

√
1− y2

4

(z0 cos θ + x0 sin θ)

)).

Comparing the first and third “rows” of each basis, since the first and third “rows” of the first
basis form the identity matrix, we find that the change of basis matrix must be:

−
√

1− y2

4 (z0 cos θ + x0 sin θ) −y

4

√
1− y2

4

(x0 cos θ − z0 sin θ)√
1− y2

4 (x0 cos θ − z0 sin θ) −y

4

√
1− y2

4

(z0 cos θ + x0 sin θ)

 ,
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which has a determinant of:

= −
√

1− y2

4
(z0 cos θ + x0 sin θ) · −y

4
√

1− y2

4

(z0 cos θ + x0 sin θ)

= −
√

1− y2

4
(x0 cos θ − z0 sin θ) · −y

4
√

1− y2

4

(x0 cos θ − z0 sin θ)

=
y

4
((z0 cos θ + x0 sin θ)2 + (x0 sin θ − z0 cos θ)2)

≥ 0.

Therefore, (α∗((u, v), (1, 0)), α∗((u, v), (0, 1))) and ((hp)∗((θ, y), (1, 0)), (hp)∗((θ, y), (0, 1))) have
the same orientation, so ((hp)∗((θ, y), (1, 0)), (hp)∗((θ, y), (0, 1))) has the positive orientation on
M , which means that hp is orientation preserving, as desired.
Next, consider the following vector in Tp(M):

(hp)∗((0, 0), (0,−1)) = (p, h′p(0, 0) ·

(
0
−1

)
)

= (p,−∂hp(θ, y)

∂y
)

∣∣∣∣
(θ,y)=(0,0)

= (p,


y

4

√
1− y2

4

(x0 cos θ − z0 sin θ)

−1
y

4

√
1− y2

4

(z0 cos θ + x0 sin θ)

)

∣∣∣∣
(θ,y)=(0,0)

= (p,

 0
−1
0

).

This vector is perpendicular to Tp(∂M) because Tp(∂M) lies in the xz-plane. Moreover, it points
away from M because ((0, 0), (0,−1)) points away from R2

≥0. Thus, (hp)∗((0, 0), (0,−1)) is
the unit outward normal vector at Tp(∂M). Next, since (((0, 0), (0,−1)), ((0, 0), (1, 0))) has the
standard orientation on R2, (hp)∗((0, 0), (0,−1)), (hp)∗((0, 0), (1, 0)) has the positive orientation
on M . Then, we have that (hp)∗((0, 0), (1, 0)) ∈ Tp(∂M) because ((0, 0), (1, 0)) ∈ T(0,0)(∂R2

≥0),
so we obtain that the following vector has the positive orientation on ∂M at p:

(hp)∗((0, 0), (1, 0)) = (p, h′p(0, 0) ·

(
1
0

)
)

= (p,
∂hp(θ, y)

∂θ
)

∣∣∣∣
(θ,y)=(0,0)

= (p,


−
√

1− y2

4 (z0 cos θ + x0 sin θ)

0√
1− y2

4 (x0 cos θ − z0 sin θ)

)

∣∣∣∣
(θ,y)=(0,0)

= (p,

−z00
x0

).
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Therefore, the vector (−z0, 0, x0) represents the induced orientation of ∂M at p, as required.

(b) We will compute
∫
∂M ω.

First, let us define the 1-cube c : [0, 1]→ ∂M by c(t) := (cos 2πt, 0, sin 2πt). Then, we can check
that c is orientation-preserving by computing c∗((0, 1)), where (0, 1) is the positive unit vector in
R1 starting at 0:

c∗((0, 1)) = (c(0), c′(0) · 1)

= ((cos 2πt, 0, sin 2πt), (−2π sin 2πt, 0, 2π cos 2πt))

∣∣∣∣
t=0

= ((1, 0, 0), (0, 0, 2π)).

According to part (a), ((1, 0, 0), (0, 0, 1)) has positive orientation on ∂M . Then, c∗((0, 1)) is a
positive scalar multiple of ((1, 0, 0), (0, 0, 1)), so c∗((0, 1)) also has positive orientation, so c is
orientation preserving, as desired. This means that c is approximately a “good cube” that covers
∂M . (Its image contains the point (1, 0, 0) twice, but this point has content 0 in ∂M , so we
ignore this anomaly.) Then, we obtain:∫

∂M
ω =

∫
c
ω

=

∫
I1
c∗(ω)

=

∫
I1
c∗(ydx+ 3xdz)

=

∫
I1

(0d(cos 2πt) + 3 cos 2πtd(sin 2πt))

=

∫
I1

6π cos2 2πtdt

=

∫ 1

0
6π cos2 2πtdt

=

∫ 1

0
(3π(2 cos2 2πt− 1) + 3π)dt

=

∫ 1

0
(3π cos 4πt+ 3π)dt (Applying double angle formula)

= (
1

4π
· 3π sin 4πt+ 3πt)

∣∣∣∣1
0

= (0 + 3π)− (0 + 0)

= 3π .

(c) We will compute
∫
M dω.

First, we will compute dω as follows:

dω = d(ydx+ 3xdz) = dy ∧ dx+ 3dx ∧ dz.

Next, consider the 2-cube b : (0, 1)2 →M defined by b(r, t) = α(r cos 2πt, r sin 2πt), and consider
the transition map φ : (0, 1)2 → B1(0) defined by φ(r, t) = α−1(b(r, t)) = (r cos 2πt, r sin 2πt).
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Then, since α is orientation preserving, we can check that b is also orientation preserving by
checking that the transition function has a differential with a positive determinant:

= det

(
∂
∂r (r cos 2πt) ∂

∂t(r cos 2πt)
∂
∂r (r sin 2πt) ∂

∂t(r sin 2πt)

)

= det

(
cos 2πt −2πr sin 2πt
sin 2πt 2πr cos 2πt

)
= (cos 2πt)(2πr cos 2πt)− (−2πr sin 2πt)(sin 2πt)

= 2πr(cos2 2πt+ sin2 2πt)

> 0,

as desired. Then, b is approximately a “good cube” that covers M . (It does not cover some
content-0 sets, including ∂M , the point (0, 2, 0), and the intersection of M with the positive
xy-plane.) Then, we can compute

∫
M dω on the next page:
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∫
M
dω =

∫
b
dω

=

∫
I2
b∗(dω)

=

∫
I2

(a ◦ φ)∗(dy ∧ dx+ 3dx ∧ dz)

=

∫
I2
φ∗(a∗(dy ∧ dx+ 3dx ∧ dz))

=

∫
I2
φ∗(d(2

√
1− u2 − v2) ∧ du+ 3du ∧ dv)

=

∫
I2
φ∗((

−2u√
1− u2 − v2

du+
−2v√

1− u2 − v2
dv) ∧ du+ 3du ∧ dv)

=

∫
I2
φ∗(

2v√
1− u2 − v2

du ∧ dv + 3du ∧ dv)

=

∫
I2
φ∗((3 +

2v√
1− u2 − v2

)du ∧ dv)

=

∫
I2

(3 +
2r sin 2πt√

1− (r cos 2πt)2 − (r sin 2πt)2
)d(r cos 2πt) ∧ d(r sin 2πt)

=

∫
I2

(3 +
2r sin 2πt√

1− r2(cos2 2πt+ sin2 2πt)
)(cos 2πtdr − 2πr sin 2πtdt) ∧ (sin 2πtdr + 2πr cos 2πtdt)

=

∫
I2

(3 +
2r sin 2πt√

1− r2
)(2πr cos2 2πtdr ∧ dt+ 2πr sin2 2πtdr ∧ dt)

=

∫
I2

(3 +
2r sin 2πt√

1− r2
) · 2πrdr ∧ dt

=

∫ 1

0

(∫ 1

0
(3 +

2r sin 2πt√
1− r2

) · 2πrdt
)
dr (Applying Fubini’s theorem)

=

∫ 1

0

(
(6πrt− 2r2 cos 2πt√

1− r2
)

∣∣∣∣t=1

t=0

)
dr

=

∫ 1

0
((6πr − 2r2√

1− r2
)− (0− 2r2√

1− r2
))dr

=

∫ 1

0
6πrdr

= 3πr2
∣∣∣∣r=1

r=0

= 3π .

This matches our answer from part (b), as expected from Stokes’ theorem.
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3. For r > 0, we define D3
r = {x ∈ R3 : |x| ≤ r} to be the 3-dimensional disk of radius r with

the orientation induced from the standard orientation of R3, and we define S2
r = ∂D3

r with the
induced orientation. We are also given ω ∈ Ω2(R3 − {0}) which satisfies:∫

S2
r

ω = a+
b

r

for all r > 0, where a, b are real constants.
(a) Given 0 < c < d, we will compute

∫
D3

d−(intD3
c )
dω.

First, the boundary of D3
d is S2

d . Next, once we remove intD3
c , it adds (−S2

c ) to the boundary
of D3

d − (intD3
c ). (Here, the negative sign means that S2

c is oriented in the opposite direction,
because on S2

c , the outward normal vector to D3
d − (intD3

c ) is opposite to the outward normal
vector to D3

c .) Then, we have that ∂(D3
d − (intD3

c )) = S2
d + (−S2

c ). As a result:∫
D3

d−(intD3
c )
dω =

∫
∂(D3

d−(intD3
c ))
ω (Applying Stokes’ theorem)

=

∫
S2
d

ω −
∫
S2
c

ω

= (a+
b

d
)− (a+

b

c
)

= b(
1

d
− 1

c
) .

(b) If ω is closed, then we claim that b = 0.
First, let us pick any 0 < c < d. Then, in part (a), we found that

∫
D3

d−(intD3
c )
dω = b(1d−

1
c ). This

time, we are given that dω = 0, so we also have
∫
D3

d−(intD3
c )
dω = 0. As a result, 0 = b(1d −

1
c ).

Since c 6= d, we divide both sides by 1
d −

1
c to obtain b = 0, as required.

(c) If ω is exact, then we claim that a = b = 0.
First, since ω is exact, ω is also closed, so part (b) gives us b = 0. Next, if ω is exact, then ω = dη
for some η ∈ Ω1(R3 − {0}). Then, we obtain:∫

S2
r

ω = a (Since b = 0)∫
S2
r

dη = a∫
∂S2

r

η = a (Applying Stokes’ theorem)

0 = a, (Since S2
r is a manifold without boundary)

as required.
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4. We are given a compact oriented (k + l + 1)-dimensional manifold M without boundary, and we
are also given ω ∈ Ωk(M) and η ∈ Ωl(M). Then, we will prove that the following formula holds:∫

M
ω ∧ dη = s

∫
M
dω ∧ η,

where s is some sign, and we will also determine s.
First, since M has no boundary,

∫
∂M ω∧η = 0. Next, since M is compact, Stokes’ theorem gives

us
∫
M d(ω∧η) =

∫
∂M ω∧η = 0. Next, by Spivak’s Theorem 4-10, d(ω∧η) = dω∧η+(−1)kω∧dη.

As a result,
∫
M (dω ∧ η + (−1)kω ∧ dη) = 0, so

∫
M dω ∧ η = (−1)k+1

∫
M ω ∧ dη. Therefore, the

desired formula is true, with the sign s = (−1)k+1, as required.
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Notes on intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions.
(Note: This section was not submitted for grading.)

1. To find counterexamples to Stokes’ theorem for parts (a) and (b), the key idea is that if we remove
the boundary of a compact manifold, then it eliminates

∫
∂M ω while making a negligible difference

to
∫
M dω, and then

∫
∂M ω and

∫
M dω are no longer equal to each other. Next, to prove that

Stokes’ theorem holds when the form has compact support, my solution was heavily motivated by
the proof of the regular Stokes’ theorem seen in lecture.
Although trying to use Stokes’ theorem on the compact set supp(ω) is a promising approach, it
has technical issues where supp(ω) may not be a manifold. To illustrate, suppose M = R2, and
suppose ω ∈ Ω1(R2) is defined by:

ω(x, y) :=

e−
1
x e−

1
1−x e

− 1
y e
− 1

1−y dx, if 0 < x < 1 and 0 < y < 1;

0, otherwise;

using the bump functions discussed earlier in the course (when creating partitions of unity). ω
is constructed so that ω is nonzero on the open rectangle (0, 1)2. Then, supp(ω) is the closed
rectangle [0, 1]2. As seen in Assignment 17 Question 5(b), [0, 1]2 is not a manifold because of the
four problematic vertices of the rectangle.

2. For part (a), most of my solution was technical computations to obtain a coordinate map covering
points on ∂M . This was done so that afterwards, we can directly apply the definition for the
induced orientation on ∂M to finish the problem.
For parts (b) and (c), the main idea is that we mainly know how to integrate on cubes, so we
find a 2-cube covering M and a 1-cube covering ∂M using a polar coordinates approach, then
we integrate on the cubes. We have also encountered this approach earlier in the course, such as
in Assignment 18 Question 2(c).

3. For part (a), we know almost nothing about dω, so this motivates us to apply Stokes’ theorem
so that we can integrate ω instead. Next, part (b) is a simple application of part (a). Finally, for
part (c), if ω is exact, then ω = dη for some η ∈ Ω1(R3 − {0}), and we want to use η somehow,
which motivates us to use Stokes’ theorem again.

4. We are given that M has several properties which hint that applying Stokes’ theorem would work
well: M is compact and oriented (so we can actually apply Stokes’ theorem), and M has no
boundary (so

∫
∂M (anything) = 0). Then, we want to find a form such that if we apply d to it,

we obtain the terms ω ∧ dη and ±dω ∧ η, and Spivak’s Theorem 4-10 helps us with that.
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