
MAT257 Assignment 18 (Forms and Orientations on
Manifolds)

(Author’s name here)
April 1, 2022



1. We are given the set of orthogonal 3 × 3 matrices O(3) := {A ∈ M3×3(R) : ATA = I},
the set of 3-dimensional rotations SO(3) := {A ∈ O(3) : detA = 1}, and the unit sphere
S2 := {p ∈ R3 : |p| = 1}. We are also given specific matrices A ∈ O(3) and B ∈ SO(3).
(a) We will prove that A(S2) = S2.
First, we will show that A(S2) ⊆ S2.

Let us write A in the form

a11 a12 a13
a21 a22 a23
a31 a32 a33

. Then, from ATA = I, we obtain:

a11 a21 a31
a12 a22 a32
a13 a23 a33


a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

1 0 0
0 1 0
0 0 1


 a211 + a221 + a231 a11a12 + a21a22 + a31a32 a11a13 + a21a23 + a31a33
a12a11 + a22a21 + a32a31 a212 + a222 + a232 a12a13 + a22a23 + a32a33
a13a11 + a23a21 + a33a31 a13a12 + a23a22 + a33a32 a213 + a223 + a233

 =

1 0 0
0 1 0
0 0 1

 .

Comparing the (1, 1)-entries of both sides, we obtain:

a211 + a221 + a231 = 1 (1)

Comparing the (2, 2)-entries of both sides, we obtain:

a212 + a222 + a232 = 1 (2)

Comparing the (3, 3)-entries of both sides, we obtain:

a213 + a223 + a233 = 1 (3)

Comparing the (1, 2)-entries or the (2, 1)-entries of both sides, we obtain:

a11a12 + a21a22 + a31a32 = 0 (4)

Comparing the (1, 3)-entries or the (3, 1)-entries of both sides, we obtain:

a11a13 + a21a23 + a31a33 = 0 (5)

Comparing the (2, 3)-entries or the (3, 2)-entries of both sides, we obtain:

a12a13 + a22a23 + a32a33 = 0 (6)
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Then, for all (x, y, z)T ∈ S2, we obtain:

=
∣∣∣A · (x, y, z)T ∣∣∣2

=

∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33


xy
z


∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣
a11x+ a12y + a13z
a21x+ a22y + a23z
a31x+ a32y + a33z


∣∣∣∣∣∣∣∣
2

= (a11x+ a12y + a13z)
2 + (a21x+ a22y + a23z)

2 + (a31x+ a32y + a33z)
2

= (a211x
2 + a212y

2 + a213z
2 + 2a11a12xy + 2a11a13xz + 2a12a13yz)

= + (a221x
2 + a222y

2 + a223z
2 + 2a21a22xy + 2a21a23xz + 2a22a23yz)

= + (a231x
2 + a232y

2 + a233z
2 + 2a31a32xy + 2a31a33xz + 2a32a33yz)

= (a211 + a221 + a231)x
2 + (a212 + a222 + a232)y

2 + (a213 + a223 + a333)z
2

= + 2(a11a12 + a21a22 + a31a32)xy + 2(a11a13 + a21a23 + a31a33)xz + 2(a12a13 + a22a23 + a32a33)yz

= x2 + y2 + z2 + 0xy + 0xz + 0yz (Applying equations (1) through (6))

= 1. (Since (x, y, z)T ∈ S2)

Then, we obtain
∣∣∣A · (x, y, z)T ∣∣∣2 = 1, so

∣∣∣A · (x, y, z)T ∣∣∣ = 1 since
∣∣∣A · (x, y, z)T ∣∣∣ is nonnegative.

As a result, A · (x, y, z)T ∈ S2 for all (x, y, z)T ∈ S2, so A(S2) ⊆ S2, as desired.
Next, given that ATA = I, we will explain why AAT = I. Since ATA = I, where I is surjective,
AT must also be surjective. Then, since AT is a square matrix, it must also be invertible. Taking
the equation ATA = I, if we multiply it by (AT )−1 to the left and AT to the right, we obtain
AAT = (AT )−1AT = I, as desired.
Next, we will show that A(S2) ⊇ S2. Since (AT )TAT = AAT = I, we have AT ∈ O(3).
Then, the same proof above shows that AT (S2) ⊆ S2. Next, for all (x, y, z)T ∈ S2, we have
A · (AT · (x, y, z)T ) = (A · AT ) · (x, y, z)T = (x, y, z)T . Since AT (S2) ⊆ S2, we also have
AT · (x, y, z)T ∈ S2, so we obtain (x, y, z)T = A · (AT · (x, y, z)T ) ∈ A(S2). This shows that
A(S2) ⊇ S2.
Since A(S2) ⊆ S2 and A(S2) ⊇ S2, we conclude that A(S2) = S2, as required.

3



(b) Given ω := xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy, we will prove A∗ω = (detA)ω as follows:

= A∗ω

= A∗(xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy)

= (a11x+ a12y + a13z)d(a21x+ a22y + a23z) ∧ d(a31x+ a32y + a33z)

= + (a21x+ a22y + a23z)d(a31x+ a32y + a33z) ∧ d(a11x+ a12y + a13z)

= + (a31x+ a32y + a33z)d(a11x+ a12y + a13z) ∧ d(a21x+ a22y + a23z)

= (a11x+ a12y + a13z)(a21dx+ a22dy + a23dz) ∧ (a31dx+ a32dy + a33dz)

= + (a21x+ a22y + a23z)(a31dx+ a32dy + a33dz) ∧ (a11dx+ a12dy + a13dz)

= + (a31x+ a32y + a33z)(a11dx+ a12dy + a13dz) ∧ (a21dx+ a22dy + a23dz)

= (a11x+ a12y + a13z)((a21a32 − a22a31)dx ∧ dy + (a22a33 − a23a32)dy ∧ dz + (a23a31 − a21a33)dz ∧ dx)

= + (a21x+ a22y + a23z)((a12a31 − a11a32)dx ∧ dy + (a13a32 − a12a33)dy ∧ dz + (a11a33 − a13a31)dz ∧ dx)

= + (a31x+ a32y + a33z)((a11a22 − a12a21)dx ∧ dy + (a12a23 − a13a22)dy ∧ dz + (a13a21 − a11a23)dz ∧ dx)

= (a11a21a32 − a11a22a31 + a12a21a31 − a11a21a32 + a11a22a31 − a12a21a31)xdx ∧ dy
= + (a12a21a32 − a12a22a31 + a12a22a31 − a11a22a32 + a11a22a32 − a12a21a32)ydx ∧ dy
= + (a13a21a32 − a13a22a31 + a12a23a31 − a11a23a32 + a11a22a33 − a12a21a33)zdx ∧ dy
= + (a11a22a33 − a11a23a32 + a13a21a32 − a12a21a33 + a12a23a31 − a13a22a31)xdy ∧ dz
= + (a12a22a33 − a12a23a32 + a13a22a32 − a12a22a33 + a12a23a32 − a13a22a32)ydy ∧ dz
= + (a13a22a33 − a13a23a32 + a13a23a32 − a12a23a33 + a12a23a33 − a13a22a33)zdy ∧ dz
= + (a11a23a31 − a11a21a33 + a11a21a33 − a13a21a31 + a13a21a31 − a11a23a31)xdz ∧ dx
= + (a12a23a31 − a12a21a33 + a11a22a33 − a13a22a31 + a13a21a32 − a11a23a32)ydz ∧ dx
= + (a13a23a31 − a13a21a33 + a11a23a33 − a13a23a31 + a13a21a33 − a11a23a33)zdz ∧ dx
= (0x+ 0y + (detA)z)dx ∧ dy + ((detA)x+ 0y + 0z)dy ∧ dz + (0x+ (detA)y + 0z)dz ∧ dx
= (detA)(zdx ∧ dy + xdy ∧ dz + ydz ∧ dx)

= (detA)ω.

Therefore, A∗ω = (detA)ω, as required.

(c) We will conclude that B∗ω = ω and hence that B is orientation preserving.
First, since B ∈ SO(3) ⊆ O(3), the same arguments above show that B∗ω = (detB)ω.
Next, since B ∈ SO(3), we also have detB = 1, so B∗ω = 1 · ω = ω, as required.
Next, we will explain why ω is nowhere zero. Let p = (x, y, z) be an arbitrary point in S2. Then,
let v1 = a1∂x + b1∂y + c1∂z and v2 = a2∂x + b2∂y + c2∂z be two linearly independent vectors in
the 2-dimensional vector space Tp(S

2). We obtain:

((dy ∧ dz)(v1, v2), (dz ∧ dx)(v1, v2), (dx ∧ dy)(v1, v2)) = (b1c2 − b2c1, c1a2 − c2a1, a1b2 − a2b1),

which is nonzero since v1 and v2 are linearly independent. Moreover, this vector is orthogonal to
v1 because:

〈v1, (b1c2 − b2c1, c1a2 − c2a1, a1b2 − a2b1)〉 = a1(b1c2 − b2c1) + b1(c1a2 − c2a1) + c1(a1b2 − a2b1)
= a1b1c2 − a1b2c1 + a2b1c1 − a1b1c2 + a1b2c1 − a2b1c1
= 0.
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Similarly, it is also orthogonal to v2. Since we are on S2, (x, y, z) is also orthogonal to v1 and v2.
Thus, (x, y, z) is parallel to ((dy ∧ dz)(v1, v2), (dz ∧ dx)(v1, v2), (dx∧ dy)(v1, v2)), so we obtain:∣∣ω(v1, v2)

∣∣ =
∣∣x(dy ∧ dz)(v1, v2) + y(dz ∧ dx)(v1, v2) + z(dx ∧ dy)(v1, v2)

∣∣
=
∣∣〈(x, y, z), ((dy ∧ dz)(v1, v2), (dz ∧ dx)(v1, v2), (dx ∧ dy)(v1, v2))〉

∣∣
=
∥∥(x, y, z)

∥∥ ·∥∥((dy ∧ dz)(v1, v2), (dz ∧ dx)(v1, v2), (dx ∧ dy)(v1, v2))
∥∥

= 1 ·
∥∥((dy ∧ dz)(v1, v2), (dz ∧ dx)(v1, v2), (dx ∧ dy)(v1, v2))

∥∥ ,
which is nonzero since ((dy ∧ dz)(v1, v2), (dz ∧ dx)(v1, v2), (dx ∧ dy)(v1, v2)) is nonzero. Thus,
ω(v1, v2) is nonzero, so ω is nonzero at every point p ∈ S2, so ω is nowhere zero.
Finally, ω is a top form on S2 that is nonzero everywhere, so ω is an orientation on M . Then,
since B∗ pulls this orientation ω onto itself, B is orientation preserving, as required.
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2. (a) We will show that the following relations hold on S2 ⊆ R3
x,y,z:

xdz ∧ dx = ydy ∧ dz, ydx ∧ dy = zdz ∧ dx, zdy ∧ dz = xdx ∧ dy.

First, we showed in class that the following relation is true on S2:

xdx+ ydy + zdz = 0. (1)

Next, if we wedge (1) with dz, we obtain:

dz ∧ (xdx+ ydy + zdz) = dz ∧ 0

xdz ∧ dx+ ydz ∧ dy + zdz ∧ dz = 0

xdz ∧ dx− ydy ∧ dz + 0 = 0

xdz ∧ dx = ydy ∧ dz,

as required.
Next, if we wedge (1) with dx, we obtain:

dx ∧ (xdx+ ydy + zdz) = dx ∧ 0

xdx ∧ dx+ ydx ∧ dy + zdx ∧ dz = 0

0 + ydx ∧ dy − zdz ∧ dx = 0

ydx ∧ dy = zdz ∧ dx,

as required.
Finally, if we wedge (1) with dy, we obtain:

dy ∧ (xdx+ ydy + zdz) = dy ∧ 0

xdy ∧ dx+ ydy ∧ dy + zdy ∧ dz = 0

−xdx ∧ dy + 0 + zdy ∧ dz = 0

zdy ∧ dz = xdx ∧ dy,

as required.

(b) Given ω := xdy ∧ dz + ydz ∧ dx + zdx ∧ dy ∈ Ω2(S2), we will show that on S2 away
from the north and south poles (where x = y = 0),

ω =
xdy − ydx
x2 + y2

∧ dz.
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Indeed, we can compute that:

ω = xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy

= xdy ∧ dz − ydx ∧ dz +
z(x2 + y2)

x2 + y2
dx ∧ dy

= xdy ∧ dz − ydx ∧ dz +
xz

x2 + y2
· xdx ∧ dy +

yz

x2 + y2
· ydx ∧ dy

= xdy ∧ dz − ydx ∧ dz +
xz

x2 + y2
· zdy ∧ dz +

yz

x2 + y2
· zdz ∧ dx (Applying part (a))

= xdy ∧ dz − ydx ∧ dz +
xz2

x2 + y2
dy ∧ dz − yz2

x2 + y2
dx ∧ dz

= xdy ∧ dz − ydx ∧ dz + x · 1− x2 − y2

x2 + y2
dy ∧ dz − y · 1− x2 − y2

x2 + y2
dx ∧ dz (x2 + y2 + z2 = 1 on S2)

= xdy ∧ dz − ydx ∧ dz +
x

x2 + y2
dy ∧ dz − xdy ∧ dz − y

x2 + y2
dx ∧ dz + ydx ∧ dz

=
x

x2 + y2
dy ∧ dz − y

x2 + y2
dx ∧ dz

=
xdy − ydx
x2 + y2

∧ dz,

as required.

(c) We will provide a physical interpretation of this result.
First, we will relate ω with the standard area in R3. At any point p = (x, y, z) ∈ S2, if we have
two tangent vectors v1 = a1∂x + b1∂y + c1∂z, v2 = a2∂x + b2∂y + c2∂z ∈ Tp(S2), then we obtain:

((dy ∧ dz)(v1, v2), (dz ∧ dx)(v1, v2), (dx ∧ dy)(v1, v2)) = (b1c2 − b2c1, c1a2 − c2a1, a1b2 − a2b1),

which is the cross product of v1 and v2. Moreover, this vector is orthogonal to v1 because:

〈v1, (b1c2 − b2c1, c1a2 − c2a1, a1b2 − a2b1)〉 = a1(b1c2 − b2c1) + b1(c1a2 − c2a1) + c1(a1b2 − a2b1)
= a1b1c2 − a1b2c1 + a2b1c1 − a1b1c2 + a1b2c1 − a2b1c1
= 0.

Similarly, it is also orthogonal to v2. Since we are on S2, (x, y, z) is also orthogonal to v1 and v2.
Thus, (x, y, z) is parallel to ((dy ∧ dz)(v1, v2), (dz ∧ dx)(v1, v2), (dx∧ dy)(v1, v2)), so we obtain:∣∣ω(v1, v2)

∣∣ =
∣∣x(dy ∧ dz)(v1, v2) + y(dz ∧ dx)(v1, v2) + z(dx ∧ dy)(v1, v2)

∣∣
=
∣∣〈(x, y, z), ((dy ∧ dz)(v1, v2), (dz ∧ dx)(v1, v2), (dx ∧ dy)(v1, v2))〉

∣∣
=
∥∥(x, y, z)

∥∥ ·∥∥((dy ∧ dz)(v1, v2), (dz ∧ dx)(v1, v2), (dx ∧ dy)(v1, v2))
∥∥

= 1 ·‖v1 × v2‖
=‖v1 × v2‖ ,

which is the standard area formed by v1 and v2. Thus, ω can be treated as a volume form, and
we can find the area of a part of S2 by integrating ω on it, as desired.
Now, suppose we place a spherical loaf of bread into a bread cutting machine, and suppose that
it cuts a slice between z = a and z = b, with a < b. Then, let us define the 2-cube c : I2 → R3

by:

c(t1, t2) := (
√

1− (a+ (b− a)t2)2 cos(2πt1),
√

1− (a+ (b− a)t2)2 sin(2πt1), a+ (b− a)t2).
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Here, a+ (b− a)t2 represents the z-coordinate sliding from a to b, and
√

1− (a+ (b− a)t2)2 is
the radius of the xy-cross section at the z-coordinate. Then, this cube maps onto the crust of
the slice of the bread that gets cut, so the amount of crust on this slice is:∫
c
ω =

∫
c

xdy − ydx
x2 + y2

∧ dz (Applying part (b))

=

∫
I2
c∗(

xdy − ydx
x2 + y2

∧ dz)

=

∫
I2

( √
1− (a+ (b− a)t2)2 cos(2πt1)d(

√
1− (a+ (b− a)t2)2 sin(2πt1))

(
√

1− (a+ (b− a)t2)2 cos(2πt1))2 + (
√

1− (a+ (b− a)t2)2 sin(2πt1))2
∧ d(a+ (b− a)t2)

= −
√

1− (a+ (b− a)t2)2 sin(2πt1)d(
√

1− (a+ (b− a)t2)2 cos(2πt1))

(
√

1− (a+ (b− a)t2)2 cos(2πt1))2 + (
√

1− (a+ (b− a)t2)2 sin(2πt1))2
∧ d(a+ (b− a)t2)

)

=

∫
I2

( √
1− (a+ (b− a)t2)2 cos(2πt1)d(

√
1− (a+ (b− a)t2)2 sin(2πt1))

(
√

1− (a+ (b− a)t2)2 cos(2πt1))2 + (
√

1− (a+ (b− a)t2)2 sin(2πt1))2
∧ (b− a)dt2

= −
√

1− (a+ (b− a)t2)2 sin(2πt1)d(
√

1− (a+ (b− a)t2)2 cos(2πt1))

(
√

1− (a+ (b− a)t2)2 cos(2πt1))2 + (
√

1− (a+ (b− a)t2)2 sin(2πt1))2
∧ (b− a)dt2

)

=

∫
I2

( √
1− (a+ (b− a)t2)2 cos(2πt1)

∂
∂t1

(
√

1− (a+ (b− a)t2)2 sin(2πt1))

(
√

1− (a+ (b− a)t2)2 cos(2πt1))2 + (
√

1− (a+ (b− a)t2)2 sin(2πt1))2
· (b− a)dt1 ∧ dt2

= +

√
1− (a+ (b− a)t2)2 cos(2πt1)

∂
∂t2

(
√

1− (a+ (b− a)t2)2 sin(2πt1))

(
√

1− (a+ (b− a)t2)2 cos(2πt1))2 + (
√

1− (a+ (b− a)t2)2 sin(2πt1))2
· (b− a)dt2 ∧ dt2

= −
√

1− (a+ (b− a)t2)2 sin(2πt1)
∂
∂t1

(
√

1− (a+ (b− a)t2)2 cos(2πt1))

(
√

1− (a+ (b− a)t2)2 cos(2πt1))2 + (
√

1− (a+ (b− a)t2)2 sin(2πt1))2
· (b− a)dt1 ∧ dt2

= −
√

1− (a+ (b− a)t2)2 sin(2πt1)
∂
∂t2

(
√

1− (a+ (b− a)t2)2 cos(2πt1))

(
√

1− (a+ (b− a)t2)2 cos(2πt1))2 + (
√

1− (a+ (b− a)t2)2 sin(2πt1))2
· (b− a)dt2 ∧ dt2

)

=

∫
I2

( √
1− (a+ (b− a)t2)2 cos(2πt1) · 2π

√
1− (a+ (b− a)t2)2 cos(2πt1)

(
√

1− (a+ (b− a)t2)2 cos(2πt1))2 + (
√

1− (a+ (b− a)t2)2 sin(2πt1))2
· (b− a)dt1 ∧ dt2 + 0

= −
√

1− (a+ (b− a)t2)2 sin(2πt1) · 2π
√

1− (a+ (b− a)t2)2(− sin(2πt1))

(
√

1− (a+ (b− a)t2)2 cos(2πt1))2 + (
√

1− (a+ (b− a)t2)2 sin(2πt1))2
· (b− a)dt1 ∧ dt2 − 0

)

=

∫
I2

2π(1− (a+ (b− a)t2)
2)(cos2(2πt1) + sin2(2πt1))

(1− (a+ (b− a)t2)2)(cos2(2πt1) + sin2(2πt1))
· (b− a)dt1 ∧ dt2

=

∫
I2

2π(b− a)dt1 ∧ dt2

= 2π(b− a)

∫
I2
dt1 ∧ dt2

= 2π(b− a).

Thus, the amount of crust that a slice has only depends on the width of the slice. If we assume
that the machine cuts slices of equal width, we conclude that every slice has the same amount of
crust, as required.
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3. We are given a k-dimensional manifold-with-boundary M with an orientation OM . Then, we
defined the induced orientation O∂M on ∂M as follows: For all p ∈ ∂M , we picked a normal
vector ν(p) ∈ Tp(M) perpendicular to Tp(∂M), then we defined O∂M

p such that, for all bases

(v1, . . . , vk−1) of Tp(∂M), (v1, . . . , vk−1) has orientation O∂M
p if and only if (ν(p), v1, . . . , vk−1)

has orientation OM
p . Then, we will prove that O∂M

p is well-defined.
For all bases (v1, . . . , vk−1), (w1, . . . , wk−1) of Tp(∂M), we must check that they have the same
orientation in Tp(∂M) if and only if our definition says that they do. In other words, we must
show that they have the same orientation in Tp(∂M) if and only if (ν(p), v1, . . . , vk−1) and
(ν(p), w1, . . . , wk−1) have the same orientation in Tp(M). First, for all 1 ≤ i ≤ k−1, let us write

wi in the form
∑k−1

j=1 ai,jvj . Then, we obtain the change of basis matrix A := (ai,j) between
(v1, . . . , vk−1), (w1, . . . , wk−1). Next, the change of basis matrix between (ν(p), v1, . . . , vk−1)

and (ν(p), w1, . . . , wk−1) is the block matrix

(
1 0
0 A

)
, which has the same determinant as A.

As a result, one change of basis matrix has positive determinant if and only if the other change
of basis matrix also has positive determinant. Therefore, (v1, . . . , vk−1) and (w1, . . . , wk−1) have
the same orientation if and only if (ν(p), v1, . . . , vk−1) and (ν(p), w1, . . . , wk−1) have the same
orientation, as required.

Here is a proof that the outward unit normal vector ν(p) is well-defined at all p ∈ ∂M , which was
not in my original graded submission but is required to fully solve this problem:
First, we review the definition for ν(p). Since dimTp(M) = k and dimTp(∂M) = k − 1,
Axler 6.50 gives us that we have a 1-dimensional vector space in Tp(M) orthogonal to Tp(∂M).
Within this 1-dimensional vector space, we have exactly two vectors of unit length; let us call
them (p, n) and (p,−n). The next part of the definition requires us to choose a coordinate map
f : U →M that covers p, where U is an open subset of Rk

+. Given such a coordinate map, there
exist two vectors (f−1(p), v), (f−1(p),−v) ∈ Tf−1(p)(Rk) such that f∗((f

−1(p), v)) = (p, n) and

f∗((f
−1(p),−v)) = (p,−n). Note that f maps U ∩ (Rk−1 × {0}) to ∂M , so f∗ pushes vectors

in Tf−1(p)(Rk−1 × {0}) to Tp(∂M). In other words, if the kth coordinate of v satisfies vk = 0,
we would get n ∈ Tp(∂M), a contradiction since n is perpendicular to Tp(∂M). Then, we must
have vk 6= 0 instead. If vk < 0, then we pick ν(p) = n; otherwise, vk > 0, so (−v)k < 0, and
we pick ν(p) = −n. In other words, after we pick the coordinate map f , we define ν(p) to be
the unique unit vector in Tp(M) perpendicular to Tp(∂M) such that (f∗)

−1(ν(p)) has a negative
k-coordinate in Tf−1(p)(Rk).
Next, we need to prove that ν(p) is well-defined by proving that this definition does not depend
on the choice of f . Suppose we have two coordinate maps f : U → M and g : V → M which
cover p, where U and V are open subsets of Rk

+. Then, let (p, nf ) be the value of ν(p) given
by applying the definition using f , so if we let (f−1(p), vf ) be the unique vector in Tf−1(p)(Rk)
such that f∗(f

−1(p), vf ) = (p, nf ), then (vf )k < 0. Also, let (g−1(p), vg) be the unique vector in
Tg−1(p)(Rk) such that g∗(g

−1(p), vg) = (p, nf ). Then, to prove that g gives the same definition
for ν(p), it suffices to prove that (vg)k < 0.
Next, we will examine the differential (g−1 ◦ f)′ at f−1(p). First, since p ∈ ∂M , we have that the
kth coordinate of f−1(p) is 0 and that the kth coordinate of (g−1 ◦f)(f−1(p)) = g−1(p) is also 0.
Next, for all 1 ≤ i ≤ k, if (e1, . . . , ek) denotes the standard basis for Rk, then we have for small,
positive h that the point f−1(p)+h ·ei ∈ Rk

+ satisfies f(f−1(p)+h ·ei) ∈M ∩g(V ). This means
that g−1(f(f−1(p) + h · ei)) ∈ Rk

+, so (g−1 ◦ f)(f−1(p) + h · ei) has a nonnegative k-coordinate.

As a result, ∂(g−1◦f)k
∂xi

≥ 0 at f−1(p) for all 1 ≤ i ≤ k. Similarly, for all 1 ≤ i ≤ k − 1, we have
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for small, positive h that the point f−1(p)−h · ei ∈ Rk
+ satisfies (g−1 ◦ f)(f−1(p)−h · ei) ∈ Rk

+,

so ∂(g−1◦f)k
∂xi

≤ 0 at f−1(p). Combined with ∂(g−1◦f)k
∂xi

≥ 0, this gives us ∂(g−1◦f)k
∂xi

= 0 at f−1(p).

(Note: This does not hold for i = k because f−1(p) − h · ek is no longer in Rk
+). Overall, the

differential (g−1 ◦ f)′(f−1(p)) is the following block matrix:(
∗k−1,k−1 ∗k−1,1

0 +

)
,

where ∗i,j denotes an unknown i× j block, and + denotes a single unknown nonnegative entry.
Since f and g are diffeomorphisms, this differential must be invertible, so its final row cannot
contain only zeroes. Thus, the entry labelled “+” is actually positive.
Next, since f∗(f

−1(p), vf ) = (p, nf ), we get nf = f ′(f−1(p))·vf . Since g∗(g
−1(p), vg) = (p, nf ),

we also get (g−1)∗(p, nf ) = (g∗)
−1(p, nf ) = (g−1(p), vg), so:

vg = (g−1)′(p) · nf
= (g−1)′(p) · f ′(f−1(p)) · vf
= (g−1)′(f(f−1(p))) · f ′(f−1(p)) · vf
= (g−1 ◦ f)′(f−1(p)) · vf (Chain rule)

=

(
∗k−1,k−1 ∗k−1,1

0 +

)
· vf .

Then, by matrix multiplication, (vg)k is a positive multiple of (vf )k. Since (vf )k is negative,
(vg)k is also negative. Thus, g and f agree on the definition for ν(p), so ν(p) is well-defined, as
required.
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4. We will prove that a k-manifold M ⊆ Rn is orientable if and only if it has an atlas for which all
transition functions have differentials with positive determinants.
First, for the “⇒” direction, suppose that M is orientable. Then, let us pick an orientation for
M by picking η ∈ Ωk(M) that is nowhere zero. Let any atlas of M be given (such an atlas exists
by definition (C) for manifolds), and let us modify the atlas as follows. Consider an arbitrary
coordinate map f : W → Rn. For all x ∈ W , let ((x, e1), . . . , (x, ek)) be the standard basis

for Tx(Rk). Then, for all 1 ≤ i ≤ k, f∗((x, ei)) = (f(x), f ′(x) · ei) = (f(x), ∂f(x)∂xi
). Since we

assumed rank f ′(x) = k in definition (C) for manifolds, it follows that (f∗((x, e1)), . . . , f∗((x, ek)))
is linearly independent in Tf(x)(Rn), so it is a basis for Tf(x)(M). Then, since η is nowhere zero,
we obtain η(f∗((x, e1)), . . . , f∗((x, ek))) 6= 0 for all x ∈ W . Moreover, η is continuous, so it
follows that η(f∗((x, e1)), . . . , f∗((x, ek))) is either always positive or always negative on W .
If it is positive, then we leave f : W → Rn as it is. Otherwise, let us define the invertible linear
map T : Rk → Rk by T (x1, x2, . . . , xk) := (−x1, x2, . . . , xk) (note that T is its own inverse),
and let us replace f with the coordinate map g := f ◦ T : T (W )→ Rn. Then, for all x ∈ T (W ),
we obtain:

= η(g∗((x, e1)), g∗((x, e2)), . . . , g∗((x, ek)))

= η(f∗(T∗((x, e1))), f∗(T∗((x, e2))), . . . , f∗(T∗((x, ek))))

= η(f∗((T (x), T ′(x) · e1)), f∗((T (x), T ′(x) · e2)), . . . , f∗((T (x), T ′(x) · ek)))

= η(f∗((T (x), T · e1)), f∗((T (x), T · e2)), . . . , f∗((T (x), T · ek))) (Since T is a linear map)

= η(f∗((T (x),−e1)), f∗((T (x), e2)), . . . , f∗((T (x), ek)))

= η(−f∗((T (x), e1)), f∗((T (x), e2)), . . . , f∗((T (x), ek))) (Since f∗ is linear)

= −η(f∗((T (x), e1)), f∗((T (x), e2)), . . . , f∗((T (x), ek))), (Since η is k-linear)

which is positive because η(f∗((T (x), e1)), . . . , f∗((T (x), ek))) is negative. This forms a new atlas
ofM such that for all coordinate maps f : W → Rn, and for all x ∈W , η(f∗((x, e1)), . . . , f∗((x, ek)))
is positive. In other words, if ωk := dx1 ∧ · · · ∧ dxk denotes the standard k-form on Rk, then we
have that (f∗(η))((x, e1), . . . , (x, ek)) > 0, so f∗(η) is a positive multiple of ωk.
Next, for all coordinate maps f1 : W1 → Rn and f2 : W2 → Rn such that f1(W1) ∩ f2(W2) 6= ∅,
consider the transition map φ := f−12 ◦ f1 : f−11 (f1(W1) ∩ f2(W2)) → f−12 (f1(W1) ∩ f2(W2)).
Then, at all points x ∈ f−11 (f1(W1) ∩ f2(W2)), we obtain:

f∗1 (η) = (f2 ◦ φ)∗(η) = φ∗(f∗2 (η)).

Since f∗1 (η) and f∗2 (η) are both positive multiples of ωk, it follows that φ∗(f∗2 (η)) and f∗2 (η)
are both positive multiples of ωk, so φ is orientation preserving. This means that detφ′ > 0.
Therefore, if M is orientable, then we showed that M has an atlas for which all transition functions
have differentials with positive determinants, as required for the “⇒” direction.
Next, for the “⇐” direction, suppose that M has an atlas for which all transition functions have
differentials with positive determinants. Then, let us construct an orientation for M as follows: For
all p ∈M , find a coordinate map f : W → Rn in the given atlas such that p ∈ f(W ), then pick the
orientation for Tp(M) given by the ordered basis (f∗((f

−1(p), e1)), . . . , f∗((f
−1(p), ek))). Then,

f∗((f
−1(p), e1)), . . . , f∗((f

−1(p), ek)) are k smooth vector fields on W which locally represent
our constructed orientation, so such a representation exists at all points on M . Then, to finish
proving that we have constructed a valid orientation for M , it suffices to show that the definitions
induced by overlapping coordinate patches agree with each other.
Suppose f1 : W1 → Rn and f2 : W2 → Rn are coordinate maps such that f1(W1)∩ f2(W2) 6= ∅.
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Then, the transition map φ := f−12 ◦ f1 : f−11 (f1(W1) ∩ f2(W2)) → f−12 (f1(W1) ∩ f2(W2)) has
a differential with a positive determinant by assumption. Next, we have:

((f1)∗((f
−1
1 (p), e1)), . . . , (f1)∗((f

−1
1 (p), ek))) = ((f2 ◦ φ)∗((f

−1
1 (p), e1)), . . . , (f2 ◦ φ)∗((f

−1
1 (p), ek)))

= ((f2)∗(φ∗((f
−1
1 (p), e1))), . . . , (f2)∗(φ∗((f

−1
1 (p), ek)))).

Since detφ′ > 0, we obtain that φ is orientation preserving, so (φ∗((f
−1
1 (p), e1)), . . . , φ∗((f

−1
1 (p), ek)))

has the same orientation as ((f−12 (p), e1), . . . , (f
−1
2 (p), ek)) in Tf−1

2 (p)(R
k). As a result, (f2)∗

pushes them to the same orientation in Tp(M). Therefore, the orientations induced by f1 and
f2 agree on f1(W1) ∩ f2(W2), so our orientation on M is well defined, as required for the “⇐”
direction.
Since we proved both directions, we conclude that M is orientable if and only if it has an atlas
whose transition functions all have differentials with positive determinants, as required.
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5. Given an (n− 1)-dimensional manifold M in Rn, we will show that M is orientable if and only if
there exists a consistent nonzero normal field ν to M in Rn.
First, for the “⇒” direction, suppose that M is orientable, and suppose that an orientation Op

is chosen at all p ∈ M in a consistent way. Then, let us define the normal field ν to M as
follows. Given any p ∈ M , since dimTp(Rn) = n and dimTp(M) = n − 1, it follows from
Axler 6.50 that we have a 1-dimensional vector space of vectors perpendicular to Tp(M) at p.
Within this 1-dimensional vector space, we have exactly two vectors of unit length; let us call
them n1 and −n1. Next, let (v1, . . . , vn−1) be an ordered basis for Tp(M) with orientation
Op. Then, (v1, . . . , vn−1, n1) is linearly independent because n1 is orthogonal to v1, . . . , vn−1, so
(dx1∧· · ·∧dxn)(v1, . . . , vn−1, n1) is nonzero. As a result, either (dx1∧· · ·∧dxn)(v1, . . . , vn−1, n1)
or (dx1 ∧ · · · ∧dxn)(v1, . . . , vn−1,−n1) is positive, and we will define ν(p) := n1 or ν(p) := −n1,
respectively. In other words, ν(p) is defined to be the unique unit vector perpendicular to Tp(M)
such that (v1, . . . , vn−1, ν(p)) has the standard orientation in Rn.
Next, we must check that ν(p) is well-defined by showing that the definition does not depend on the
choice for (v1, . . . , vn−1). Suppose that we have two ordered bases (v1, . . . , vn−1), (w1, . . . , wn−1)
for Tp(M), both with orientation Op. Then, for all 1 ≤ i ≤ n − 1, we can write wi in the form∑n−1

j=1 ai,jvj . Afterward, we obtain the (n−1)×(n−1) change of basis matrix A := (ai,j) between
(v1, . . . , vn−1) and (w1, . . . , wn−1). These bases have the same orientation, we obtain detA > 0.
Additionally, if we consider n1 and −n1 from the previous paragraph (which are independent of
our choice of basis for Tp(M)), then the change of basis matrix between (v1, . . . , vn−1, n1) and

(w1, . . . , wn−1, n1) is the block matrix

(
A 0
0 1

)
, whose determinant is also detA > 0. Thus,

(v1, . . . , vn−1, n1) has the standard orientation of Rn if and only if (w1, . . . , wn−1, n1) has the
standard orientation of Rn, so the bases (v1, . . . , vn−1) and (w1, . . . , wn−1) induce the same
definition for ν(p), as required.
Next, we must check that ν is smooth on M . Let p ∈ M be arbitrary, and let f : W → Rn be
any coordinate map such that p ∈ f(W ). Then, for all x ∈ W , let ((x, e1), . . . , (x, en−1)) be
the standard basis for Tx(Rn−1). Next, we can define the smooth vector fields X1, . . . , Xn−1 on
f(W ) by Xi(f(x)) := f∗((x, ei)) for all 1 ≤ i ≤ n− 1. Then, let us define g : W ×Rn → Rn by:

g(x, y) = (〈X1(f(x)), (f(x), y)〉, . . . , 〈Xn−1(f(x)), (f(x), y)〉,|y|2 − 1).

Then, g is smooth. Moreover, we have that:

g(f−1(p), ν(p)) = (〈X1(p), ν(p)〉, . . . , 〈Xn−1(p), ν(p)〉,
∣∣ν(p)

∣∣2 − 1) = (0, . . . , 0, 0),

where each 〈Xi(p), ν(p)〉 equals zero since Xi(p) ∈ Tp(M) and ν(p) is orthogonal to Tp(M),

and
∣∣ν(p)

∣∣2 − 1 = 0 since ν(p) is a unit vector. Finally, if we write each Xi(p) in the form
(p, ai,1e1 + · · ·+ ai,nen), and if we write ν(p) in the form (p, y1e1 + · · ·+ ynen), we can compute
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the matrix ∂g(x,y)
∂y at (f−1(p), (y1, . . . , yn)) as follows:

∂g(x, y)

∂y
=


∂g1(x,y)

∂y1
· · · ∂g1(x,y)

∂yn
...

. . .
...

∂gn−1(x,y)
∂y1

· · · ∂gn−1(x,y)
∂yn

∂gn(x,y)
∂y1

· · · ∂gn(x,y)
∂yn



=


∂

∂y1
(a1,1y1 + · · ·+ a1,nyn) · · · ∂

∂yn
(a1,1y1 + · · ·+ a1,nyn)

...
. . .

...
∂

∂y1
(an−1,1y1 + · · ·+ an−1,nyn) · · · ∂

∂yn
(an−1,1y1 + · · ·+ an−1,nyn)

∂
∂y1

(y21 + · · ·+ y2n − 1) · · · ∂
∂yn

(y21 + · · ·+ y2n − 1)



=


a1,1 · · · a1,n

...
. . .

...
an−1,1 · · · an−1,n

2y1 · · · 2yn



=


X1(p)

...
Xn−1(p)

2ν(p)

 .

This matrix has linearly independent rows, so it is invertible. Therefore, all conditions of the
implicit function theorem are satisfied, so there exists a unique smooth function h defined near
f−1(p) such that g(x, h(x)) ≡ 0 and such that (p, h(f−1(p))) = ν(p). Then, for all 1 ≤ i ≤ n−1,
since gi(x, h(x)) ≡ 0, the vector (f(x), h(x)) ∈ Tf(x)(Rn) is orthogonal to Xi(f(x)) for x near
f−1(p). As a result, (f(x), h(x)) is orthogonal to Tf(x)(M). Also, since gn(x, h(x)) ≡ 0,
we have that

∣∣h(x)
∣∣ ≡ 1, so (f(x), h(x)) is a unit vector. Finally, if ωn denotes the standard

n-form on Rn, we have that ωn(X1(f(x)), . . . , Xn−1(f(x)), (f(x), h(x))) is nowhere zero since
X1(f(x)), . . . , Xn−1(f(x)), (f(x), h(x)) are linearly independent (since (f(x), h(x)) is orthogonal
to X1(f(x)), . . . , Xn−1(f(x))). Then, ωn(X1(f(x)), . . . , Xn−1(f(x)), (f(x), h(x))) has a fixed
sign since it is continuous. Also, at x = f−1(p), ωn(X1(p), . . . , Xn−1(p), ν(p)) > 0 because
we know that (X1(p), . . . , Xn−1(p), ν(p)) has the standard orientation by definition of p. As
a result, ωn(X1(f(x)), . . . , Xn−1(f(x)), (f(x), h(x))) is positive everywhere, so we obtain that
(X1(f(x)), . . . , Xn−1(f(x)), (f(x), h(x))) has the standard orientation. Thus, (f(x), h(x)) is
precisely ν(f(x)). Since h is smooth, it follows that ν is smooth near p. Since this is true for all
p ∈M , ν is a smooth nonzero vector field normal to M , as required for the “⇒” direction.
Next, for the “⇐” direction, suppose that there exists a consistent nonzero normal field ν to M in
Rn. Then, let us define η ∈ Ωn−1(M) as follows: For all p ∈M and all v1, . . . , vn−1 ∈ Tp(M), let
us define η(p)(v1, . . . , vn−1) := (dx1 ∧ · · · ∧ dxn)(v1, . . . , vn−1, ν(p)). Then, η is smooth because
dx1 ∧ · · · ∧ dxn and ν are smooth. Moreover, if we pick any basis (e1, . . . , en−1) for Tp(M), then
(e1, . . . , en−1, ν(p)) is linearly independent in Tp(Rn) because ν(p) is orthogonal to e1, . . . , en−1,
which means that η(p)(e1, . . . , en−1) = (dx1 ∧ · · · ∧ dxn)(e1, . . . , en−1, ν(p)) 6= 0. As a result, η
is nonzero at every point p ∈ M , so η is a valid orientation on M . Therefore, M is orientable if
there exists a consistent nonzero normal field ν to M in Rn, as required for the “⇐” direction.
Since we proved both directions, we conclude that M is orientable if and only if there exists a
consistent nonzero normal field ν to M in Rn, as required.
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Notes on intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions.
(Note: This section was not submitted for grading.)

1. As noted in the grader’s comments, it is possible to find much cleaner solutions if one is comfortable
enough with clever linear algebra tricks. Otherwise, it is also possible to brute-force this problem
as in my solution, but it is much messier and more time-consuming.

2. For part (a), the given hint (wedge xdx+ ydy+ zdz = 0 with dx, dy, and dz) solves the problem
immediately. It may also be possible to approach this problem without the hint by working
backwards. For instance, suppose we want to prove that xdz ∧ dx = ydy ∧ dz on S2. This is
equivalent to 0 = xdz ∧ dx − ydy ∧ dz = xdz ∧ dx + ydz ∧ dy = dz ∧ (xdx + ydy). Then, the
(xdx+ ydy) terms could remind you of xdx+ ydy + zdz = 0, then we proceed as in the hint.
For part (b), we can approach this problem by working backwards. We want to prove that
ω = x

x2+y2
dy ∧ dz + y

x2+y2
dz ∧ dx, so we can compare x

x2+y2
dy ∧ dz and y

x2+y2
dz ∧ dx with the

xdy ∧ dz + ydz ∧ dx terms contained in ω, and we can see how much dy ∧ dz and dz ∧ dx is
remaining, and we can see how to convert zdx ∧ dy into the remaining terms.
For part (c), if we interpret ω as the volume form, then we want to integrate ω over the crust
to find the amount of crust on a slice. To do so, the main idea is that we mainly know how to
integrate on cubes, so we find a 2-cube covering the crust using a polar coordinates approach,
and then we integrate ω over the 2-cube to find the amount of crust.

3. For this question, the main idea was to use change-of-basis matrices to compare orientations.
Relating orientations using change-of-basis matrices is a standard idea that we have also seen
earlier in the course, including in Assignment 13 Question 2.

4. One possible approach is to recall that, similarly to Assignment 13 Question 2, a transition function
g−1 ◦ f (where f and g are coordinate maps) has a differential with positive determinant if and
only if it is orientation preserving. Then, one way for g−1 ◦ f to be orientation preserving is if
both components, f and g, preserve orientations. This motivates us to pick the atlas such that
all coordinate maps are orientation preserving for the “⇒” direction, and also to construct an
orientation on M such that all coordinate maps are orientation preserving for the “⇐” direction.

5. The main intuition for this question is that a normal vector field on M can be used to induce an
orientation of M using an orientation of Rn, similarly to how in Question 3, a normal vector field
on ∂M induces an orientation of ∂M using an orientation of M . Additionally, to ensure that the
normal vector field ν(p) is defined consistently, it was helpful to define ν(p) as a unit vector so
that it does not change by a scalar factor based on certain choices. This also helps to ensure that
ν(p) is smooth because ν(p) does not suddenly extend or contract non-continuously on any point
on the manifold.
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