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1. (a) Given that ∂2 = 0, we will show that if b = ∂c for some chains b and c, then ∂b = 0.
Indeed, we have ∂b = ∂(∂c) = ∂2c = 0, as required.

(b) We will show that the 1-cube b(t) = (cos 2πt, sin 2πt) in R2 − {0} has ∂b = 0, yet it is
not the boundary of any 2-chain c ∈ C2(R2 − {0}).
First, let a be the 0-cube a = (1, 0) in R2−{0}. Then, b◦I1(1,0) = b(0) = (cos 0, sin 0) = (1, 0) = a

and b ◦ I1(1,1) = b(1) = (cos 2π, sin 2π) = (1, 0) = a. Thus, we can compute ∂b as follows:

∂b =
1∑
i=1

∑
α∈{0,1}

(−1)i+αb ◦ I1(i,α)

= (−1)1+0b ◦ I1(1,0) + (−1)1+1b ◦ I1(1,1)
= −a+ a

= 0,

as required.
Next, assume for contradiction that there exists a 2-chain c such that b = ∂c. Let us define the
1-form ω := −ydx+xdy

x2+y2
∈ Ω1(R2−{0}). Then, we plan to prove that

∫
c dω 6=

∫
∂c ω, contradicting

Stokes’ Theorem.
First, we can compute dω as follows:

dω = dx ∧ ∂

∂x
ω + dy ∧ ∂

∂y
ω

= dx ∧ ∂

∂x

−ydx+ xdy

x2 + y2
+ dy ∧ ∂

∂y

−ydx+ xdy

x2 + y2

= dx ∧ ∂

∂x

−y
x2 + y2

dx+ dx ∧ ∂

∂x

x

x2 + y2
dy + dy ∧ ∂

∂y

−y
x2 + y2

dx+ dy ∧ ∂

∂y

x

x2 + y2
dy

= 0 +
∂
∂xx · (x

2 + y2)− x · ∂∂x(x2 + y2)

(x2 + y2)2
dx ∧ dy −

∂
∂y (−y) · (x2 + y2)− (−y) · ∂∂y (x2 + y2)

(x2 + y2)2
dx ∧ dy + 0

=
x2 + y2 − 2x2

(x2 + y2)2
dx ∧ dy − −x

2 − y2 + 2y2

(x2 + y2)2
dx ∧ dy

=
−x2 + y2

(x2 + y2)2
dx ∧ dy − −x

2 + y2

(x2 + y2)2
dx ∧ dy

= 0.

Since dω = 0, it follows that
∫
c dω = 0.
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Next, we can compute
∫
∂c ω as follows:∫

∂c
ω =

∫
b
ω

=

∫
I1
b∗ω

=

∫
I1
b∗
−ydx+ xdy

x2 + y2

=

∫
I1

− sin 2πtd(cos 2πt) + cos 2πtd(sin 2πt)

cos2 2πt+ sin2 2πt

=

∫
I1

− sin 2πt · ddt cos 2πtdt+ cos 2πt · ddt sin 2πtdt

cos2 2πt+ sin2 2πt

=

∫
I1

2π sin2 2πtdt+ 2π cos2 2πtdt

cos2 2πt+ sin2 2πt

=

∫
I1

2πdt

1

=

∫ 1

0
2πdt

= 2πt

∣∣∣∣1
0

= 2π

6=
∫
c
dω.

Thus,
∫
c dω 6=

∫
∂c ω, contradicting Stokes’ Theorem.

Therefore, by contradiction, b cannot be the boundary of any 2-chain on R2−{0}, as required.
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2. We are given a 1-form ω = fdx ∈ Ω1([0, 1]) such that f is smooth and f(0) = f(1). Then, we
will show that there is a unique real number λ such that ω − λdx is of the form dg for some
smooth g : [0, 1]→ R for which g(0) = g(1). In fact, we will show that ω − λdx is of that form
if and only if λ =

∫ 1
0 f(x)dx.

First, for the “⇒” direction, assume that ω−λdx = dg for some smooth g : [0, 1]→ R for which
g(0) = g(1). By definition of d, we have dg = d

dxg(x)dx = g′(x)dx. Then, we can integrate
ω − λdx = dg over the interval I = [0, 1] to obtain:∫

I
(ω − λdx) =

∫
I
dg∫

I
f(x)dx−

∫
I
λdx =

∫
I
g′(x)dx∫

I
f(x)dx− λx

∣∣∣∣1
0

=

∫ 1

0
g′(x)dx∫

I
f(x)dx− λ =

∫ 1

0
g′(x)dx∫

I
f(x)dx− λ = g(1)− g(0) (Fundamental Theorem of Calculus)∫

I
f(x)dx− λ = 0. (Since g(1) = g(0))

Thus, λ =
∫
I f(x)dx, as required for the “⇒” direction.

Next, for the “⇐” direction, assume that λ =
∫ 1
0 f(x)dx. Then, let us define the smooth function

g : [0, 1]→ R by g(x) :=
∫ x
0 f(t)dt−λx. Then, we can show that g(0) = g(1) using the following

LS-RS proof:

LS = g(0) RS = g(1)

=

∫ 0

0
f(t)dt− λ · 0 RS =

∫ 1

0
f(t)dt− λ

= 0− 0 = λ− λ
= 0 = 0

= RS.

Thus, LS = RS, so g(0) = g(1), as desired.
Next, we can show that ω − λdx = dg using the following LS-RS proof:

LS = ω − λdx RS = dg

= f(x)dx− λdx =
d

dx
g(x)dx

= (f(x)− λ)dx =
d

dx
(

∫ x

0
f(t)dt− λx)dx

= (f(x)− λ)dx (Fundamental Theorem of Calculus)

= LS.

Thus, LS = RS, so ω − λdx = dg, as desired.
Overall, we found a smooth function g : [0, 1]→ R satisfying g(0) = g(1) such that ω−λdx = dg,
as required for the “⇐” direction.
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Since we proved both directions, we conclude that there is a unique λ ∈ R such that ω−λdx = dg
for some smooth g : [0, 1] → R for which g(0) = g(1), and this value of λ is

∫ 1
0 f(x)dx, as

required.
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3. We are given a closed form ω ∈ Ω1(R2 − {0}), as well as η := −ydx+xdy
x2+y2

. Then, we will prove
that there is a unique real number λ such that ω − λη is exact.
First, for all r > 0, let us define the 1-cube br(t) = (r cos 2πt, r sin 2πt) in R2 − {0}. Then, we
will prove that ω − λη is exact if and only if λ = 1

2π

∫
b1
ω.

First, for the “⇒” direction, suppose that ω − λη is exact. Then, ω − λη = dg for some
g ∈ Ω0(R2 − {0}).
Next, for all r > 0, define the 0-cube ar = (r, 0). Then, br ◦I1(1,0) = br(0) = (r cos 0, r sin 0) = ar

and br ◦ I1(1,1) = br(1) = (r cos 2π, r sin 2π) = ar. As a result, we can compute ∂br as follows:

∂br =
1∑
i=1

∑
α∈{0,1}

(−1)i+αbr ◦ I1(i,α)

= (−1)1br ◦ I1(1,0) + (−1)2br ◦ I1(1,1)
= −ar + ar

= 0.

It follows that
∫
∂br

g = 0. Then, by Stokes’ Theorem, we obtain
∫
br
dg =

∫
∂br

g = 0, so:∫
br

dg = 0∫
br

(ω − λη) = 0∫
br

ω − λ
∫
br

η = 0

λ

∫
br

η =

∫
br

ω

λ

∫
br

−ydx+ xdy

x2 + y2
=

∫
br

ω

λ

∫
I1
b∗r(
−ydx+ xdy

x2 + y2
) =

∫
br

ω

λ

∫
I1

−r sin 2πtd(r cos 2πt) + r cos 2πtd(r sin 2πt)

r2 cos2 2πt+ r2 sin2 2πt
=

∫
br

ω

λ

∫
I1

−r sin 2πt · ddtr cos 2πtdt+ r cos 2πt · ddtr sin 2πtdt

r2 cos2 2πt+ r2 sin2 2πt
=

∫
br

ω

λ

∫
I1

r2

r2
2π sin2 2πtdt+ 2π cos2 2πtdt

cos2 2πt+ sin2 2πt
=

∫
br

ω

λ

∫
I1

2π

1
dt =

∫
br

ω

λ · 2π =

∫
br

ω

λ =
1

2π

∫
br

ω.

Substituting r = 1, we obtain λ = 1
2π

∫
b1
ω, as required for the “⇒” direction.

Next, for the “⇐” direction, suppose that λ = 1
2π

∫
b1
ω.
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Step 1: For all r > 0, we will show that
∫
br
ω =

∫
b1
ω = 2πλ.

First, let us define the 2-cube cr(t1, t2) := (((r − 1)t1 + 1) cos 2πt2, ((r − 1)t1 + 1) sin 2πt2) in
R2 − {0}, and let us define the 1-cube b′r(t) := ((r − 1)t+ 1, 0) in R2 − {0}. Then:

• We have for all t ∈ [0, 1] that:

(cr◦I2(1,0))(t) = cr(0, t) = (((r−1)(0)+1) cos 2πt, ((r−1)(0)+1) sin 2πt) = (cos 2πt, sin 2πt) = b1(t),

so cr ◦ I2(1,0) = b1.

• We have for all t ∈ [0, 1] that:

(cr◦I2(1,1))(t) = cr(1, t) = (((r−1)(1)+1) cos 2πt, ((r−1)(1)+1) sin 2πt) = (r cos 2πt, r sin 2πt) = br(t),

so cr ◦ I2(1,1) = br.

• We have for all t ∈ [0, 1] that:

(cr◦I2(2,0))(t) = cr(t, 0) = (((r−1)t+1) cos 0, ((r−1)t+1) sin 0) = ((r−1)t+1, 0) = b′r(t),

so cr ◦ I2(2,0) = b′r.

• We have for all t ∈ [0, 1] that:

(cr◦I2(2,1))(t) = cr(t, 1) = (((r−1)t+1) cos 2π, ((r−1)t+1) sin 2π) = ((r−1)t+1, 0) = b′r(t),

so cr ◦ I2(2,1) = b′r.

Then, we can compute ∂cr as follows:

∂cr =
2∑
i=1

∑
α∈{0,1}

(−1)i+αcr ◦ I2(i,α)

= (−1)1cr ◦ I2(1,0) + (−1)2cr ◦ I2(1,1) + (−1)2cr ◦ I2(2,0) + (−1)3cr ◦ I2(2,1)
= −b1 + br + b′r − b′r
= br − b1.

Next, we are given that dω = 0, so
∫
cr
dω = 0. Then, by Stokes’ Theorem on chains, we obtain:∫

∂cr

ω =

∫
cr

dω∫
br−b1

ω = 0∫
br

ω −
∫
b1

ω = 0∫
br

ω =

∫
b1

ω,

as required.
Step 2: We will express ω in polar coordinates.
First, let us write ω in terms of basic 1-forms on (R2 − {0})(x,y) as ω = f1(x, y)dx+ f2(x, y)dy.
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Next, consider the polar coordinate transformation p : ((0,∞)×R)(r,t) → (R2−{0})(x,y) defined
by p(r, t) := (r cos 2πt, r sin 2πt). Then, we can compute p∗ω as follows:

p∗ω = p∗(f1(x, y)dx+ f2(x, y)dy)

= f1(r cos 2πt, r sin 2πt)d(r cos 2πt) + f2(r cos 2πt, r sin 2πt)d(r sin 2πt)

= f1(r cos 2πt, r sin 2πt)(
∂

∂r
r cos 2πtdr +

∂

∂t
r cos 2πtdt)

= + f2(r cos 2πt, r sin 2πt)(
∂

∂r
r sin 2πtdr +

∂

∂t
r sin 2πtdt)

= f1(r cos 2πt, r sin 2πt)(cos 2πtdr − 2πr sin 2πtdt) + f2(r cos 2πt, r sin 2πt)(sin 2πtdr + 2πr cos 2πtdt)

= (f1(r cos 2πt, r sin 2πt) cos 2πt+ f2(r cos 2πt, r sin 2πt) sin 2πt)dr

= + 2πr(f2(r cos 2πt, r sin 2πt) cos 2πt− f1(r cos 2πt, r sin 2πt) sin 2πt)dt.

In other words, if we define the smooth functions h1, h2 : ((0,∞)× R)(r,t) by:

h1(r, t) := f1(r cos 2πt, r sin 2πt) cos 2πt+ f2(r cos 2πt, r sin 2πt) sin 2πt,

h2(r, t) := 2πr(f2(r cos 2πt, r sin 2πt) cos 2πt− f1(r cos 2πt, r sin 2πt) sin 2πt),

then we obtain:
p∗ω = h1(r, t)dr + h2(r, t)dt.

Step 3: We will show that ∂h2(r,t)
∂r = ∂h1(r,t)

∂t .
Since we are given that dω = 0, we obtain:

p∗(dω) = 0

d(p∗ω) = 0

d(h1(r, t)dr + h2(r, t)dt) = 0

dr ∧ ∂

∂r
(h1(r, t)dr + h2(r, t)dt) + dt ∧ ∂

∂t
(h1(r, t)dr + h2(r, t)dt) = 0

∂h1(r, t)

∂r
dr ∧ dr +

∂h2(r, t)

∂r
dr ∧ dt+

∂h1(r, t)

∂t
dt ∧ dr +

∂h2(r, t)

∂t
dt ∧ dt = 0

0 +
∂h2(r, t)

∂r
dr ∧ dt− ∂h1(r, t)

∂t
dr ∧ dt+ 0 = 0

∂h2(r, t)

∂r
dr ∧ dt =

∂h1(r, t)

∂t
dr ∧ dt.

Thus, ∂h2(r,t)
∂r = ∂h1(r,t)

∂t , as desired.
Step 4: We will expand λ = 1

2π

∫
br
ω as follows:

λ =
1

2π

∫
br

ω

=
1

2π

∫
I1
b∗rω

=
1

2π

∫
I1
b∗r(f1(x, y)dx+ f2(x, y)dy)

=
1

2π

∫
I1
f1(r cos 2πt, r sin 2πt)d(r cos 2πt) + f2(r cos 2πt, r sin 2πt)d(r sin 2πt)
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Note that we treat r as a constant, so we obtain:

λ =
1

2π

∫
I1
f1(r cos 2πt, r sin 2πt) · (−2πr sin 2πt)dt+ f2(r cos 2πt, r sin 2πt) · (2πr cos 2πt)dt

=
1

2π

∫ 1

0
2πr(f2(r cos 2πt, r sin 2πt) cos 2πt− f1(r cos 2πt, r sin 2πt) sin 2πt)dt.

=
1

2π

∫ 1

0
h2(r, t)dt.

Step 5: We will construct a candidate for g ∈ Ω0(R2 − {0}) such that ω − λη = dg.
Let us define g : R2 − {0} → R as follows: For all (x, y) ∈ R2 − {0}, write (x, y) in the form
(r cos 2πt, r sin 2πt), where r > 0, then define:

g(r cos 2πt, r sin 2πt) :=

∫ t

0
h2(r, s)ds− 2πλt+

∫ r

1
h1(s, 0)ds.

We must check that g is well-defined. In other words, for all (r1, t1), (r2, t2) ∈ (0,∞) × R such
that (r1 cos 2πt1, r1 sin 2πt1) = (r2 cos 2πt2, r2 sin 2πt2), we must show that:∫ t1

0
h2(r1, s)ds− 2πλt1 +

∫ r1

1
h1(s, 0)ds =

∫ t2

0
h2(r2, s)− 2πλt2 +

∫ r2

1
h1(s, 0)ds.

First, we have:

r21 = r21(cos2 2πt1 + sin2 2πt1)

= (r1 cos 2πt1)
2 + (r1 sin 2πt1)

2

= (r2 cos 2πt2)
2 + (r2 sin 2πt2)

2

= r22(cos2 2πt2 + sin2 2πt2)

= r22.

Since r21 = r22, and since r1, r2 > 0, it follows that r1 = r2.
Additionally, from r1 cos 2πt1 = r2 cos 2πt2, since r1 = r2 > 0, we obtain cos 2πt1 = cos 2πt2.
Similarly, from r1 sin 2πt1 = r2 sin 2πt2, we obtain sin 2πt1 = sin 2πt2. Overall, we obtain that
2πt1 = 2πt2 + 2πk = 2π(t2 + k) for some k ∈ Z, so t1 = t2 + k. We may assume without loss of
generality that k ≥ 0; otherwise, we may swap (r1, t1) with (r2, t2) and proceed in the same way.
As a result, we obtain:

=

∫ t1

0
h2(r1, s)ds− 2πλt1 +

∫ r1

1
h1(s, 0)ds

=

∫ t2+k

0
h2(r2, s)ds− 2πλ(t2 + k) +

∫ r2

1
h1(s, 0)ds

=
k−1∑
j=0

∫ j+1

j
h2(r2, s)ds− 2πλk +

∫ t2+k

k
h2(r2, s)ds− 2πλt2 +

∫ r2

1
h1(s, 0)ds

For the first k integrals, let us apply the u-substitution u = s − j, with ds = du. With this
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substitution, we have:

= h2(r2, s)

= 2πr2(f2(r2 cos 2πs, r2 sin 2πs) cos 2πs− f1(r2 cos 2πs, r2 sin 2πs) sin 2πs)

= 2πr2(f2(r2 cos(2πu+ 2πj), r2 sin(2πu+ 2πj)) cos(2πu+ 2πj)

= − f1(r2 cos(2πu+ 2πj), r2 sin(2πu+ 2πj)) sin(2πu+ 2πj))

= 2πr2(f2(r2 cos 2πu, r2 sin 2πu) cos 2πu− f1(r2 cos 2πu, r2 sin 2πu) sin 2πu)

= h2(r2, u).

Similarly, for the second-last integral, let us apply the u-substitution u = s−k, with ds = du and
h2(r2, s) = h2(r2, u). Then, we obtain:

=

∫ t1

0
h2(r1, s)ds− 2πλt1 +

∫ r1

1
h1(s, 0)ds

=

k−1∑
j=0

∫ 1

0
h2(r2, u)du− 2πλk +

∫ t2

0
h2(r2, u)du− 2πλt2 +

∫ r2

1
h1(s, 0)ds

=
k−1∑
j=0

2πλ− 2πλk +

∫ t2

0
h2(r2, u)du− 2πλt2 +

∫ r2

1
h1(s, 0)ds (Applying Step 4)

= 2πλk − 2πλk +

∫ t2

0
h2(r2, u)du− 2πλt2 +

∫ r2

1
h1(s, 0)ds

=

∫ t2

0
h2(r2, s)ds− 2πλt2 +

∫ r2

1
h1(s, 0)ds.

Therefore, g is well-defined, as required.
Step 6: We will obtain and solve a system of linear equations for ∂g(x,y)

∂x and ∂g(x,y)
∂y .

First, given (x, y) ∈ R2 − {0}, let us write (x, y) in the form (r cos 2πt, r sin 2πt), where r > 0.

Then, we can compute ∂g(r cos 2πt,r sin 2πt)
∂t as follows:

=
∂g(r cos 2πt, r sin 2πt)

∂t

=
∂

∂t
(

∫ t

0
h2(r, s)ds− 2πλt+

∫ r

1
h1(s, 0)ds)

= h2(r, t)− 2πλ+ 0 (Fundamental Theorem of Calculus)

= h2(r, t)− 2πλ.

On the other hand, we also have:

=
∂g(r cos 2πt, r sin 2πt)

∂t

=
∂g(x, y)

∂x
· ∂r cos 2πt

∂t
+
∂g(x, y)

∂y
· ∂r sin 2πt

∂t
(Chain rule)

= −2πr sin 2πt
∂g(x, y)

∂x
+ 2πr cos 2πt

∂g(x, y)

∂y
.

As a result, we obtain:

−2πr sin 2πt
∂g(x, y)

∂x
+ 2πr cos 2πt

∂g(x, y)

∂y
= h2(r, t)− 2πλ. (1)
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Next, we can compute ∂g(r cos 2πt,r sin 2πt)
∂r as follows:

=
∂g(r cos 2πt, r sin 2πt)

∂r

=
∂

∂r
(

∫ t

0
h2(r, s)ds− 2πλt+

∫ r

1
h1(s, 0)ds)

=
∂

∂r

∫ t

0
h2(r, s)ds− 0 + h1(r, 0) (Fundamental Theorem of Calculus)

=

∫ t

0

∂

∂r
h2(r, s)ds+ h1(r, 0) (Applying Assignment 8 Question 3, since h2 is smooth)

=

∫ t

0

∂

∂s
h1(r, s)ds+ h1(r, 0) (Applying Step 3)

= h1(r, t). (Fundamental Theorem of Calculus)

On the other hand, we also have:

=
∂g(r cos 2πt, r sin 2πt)

∂r

=
∂g(x, y)

∂x
· ∂r cos 2πt

∂r
+
∂g(x, y)

∂y
· ∂r sin 2πt

∂r
(Chain rule)

= cos 2πt
∂g(x, y)

∂x
+ sin 2πt

∂g(x, y)

∂y
.

As a result, we obtain:

cos 2πt
∂g(x, y)

∂x
+ sin 2πt

∂g(x, y)

∂y
= h1(r, t). (2)

Next, to solve for ∂g(x,y)
∂x , let us subtract sin 2πt times (1) from 2πr cos 2πt times (2). On the

left-hand side, we obtain:

LS = 2πr cos 2πt(cos 2πt
∂g(x, y)

∂x
+ sin 2πt

∂g(x, y)

∂y
)− sin 2πt(−2πr sin 2πt

∂g(x, y)

∂x
+ 2πr cos 2πt

∂g(x, y)

∂y
)

= 2πr(cos2 2πt
∂g(x, y)

∂x
+ cos 2πt sin 2πt

∂g(x, y)

∂y
+ sin2 2πt

∂g(x, y)

∂x
− sin 2πt cos 2πt

∂g(x, y)

∂y
)

= 2πr((cos2 2πt+ sin2 2πt)
∂g(x, y)

∂x
+ 0

∂g(x, y)

∂y
)

= 2πr
∂g(x, y)

∂x
.

On the right-hand side, we obtain:

RS = 2πr cos 2πth1(r, t)− sin 2πt(h2(r, t)− 2πλ).
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As a result, we obtain:

2πr
∂g(x, y)

∂x
= 2πr cos 2πth1(r, t)− sin 2πt(h2(r, t)− 2πλ)

∂g(x, y)

∂x
= cos 2πth1(r, t)−

1

2πr
sin 2πth2(r, t) +

sin 2πt

r
λ

∂g(x, y)

∂x
= cos 2πt(f1(r cos 2πt, r sin 2πt) cos 2πt+ f2(r cos 2πt, r sin 2πt) sin 2πt)

= − sin 2πt(f2(r cos 2πt, r sin 2πt) cos 2πt− f1(r cos 2πt, r sin 2πt) sin 2πt) +
sin 2πt

r
λ

∂g(x, y)

∂x
=
x

r
(f1(x, y)

x

r
+ f2(x, y)

y

r
)− y

r
(f2(x, y)

x

r
− f1(x, y)

y

r
) +

y

r2
λ

∂g(x, y)

∂x
=
x2 + y2

r2
f1(x, y) + 0f2(x, y) +

y

x2 + y2
λ

∂g(x, y)

∂x
= f1(x, y) +

y

x2 + y2
λ.

Next, to solve for ∂g(x,y)
∂y , let us add cos 2πt times (1) to 2πr sin 2πt times (2). On the left-hand

side, we obtain:

LS = 2πr sin 2πt(cos 2πt
∂g(x, y)

∂x
+ sin 2πt

∂g(x, y)

∂y
) + cos 2πt(−2πr sin 2πt

∂g(x, y)

∂x
+ 2πr cos 2πt

∂g(x, y)

∂y
)

= 2πr(sin 2πt cos 2πt
∂g(x, y)

∂x
+ sin2 2πt

∂g(x, y)

∂y
− sin 2πt cos 2πt

∂g(x, y)

∂x
+ cos2 2πt

∂g(x, y)

∂y
)

= 2πr(0
∂g(x, y)

∂x
+ (sin2 2πt+ cos2 2πt)

∂g(x, y)

∂y
)

= 2πr
∂g(x, y)

∂y
.

On the right-hand side, we obtain:

RS = 2πr sin 2πth1(r, t) + cos 2πt(h2(r, t)− 2πλ).

As a result, we obtain:

2πr
∂g(x, y)

∂y
= 2πr sin 2πth1(r, t) + cos 2πt(h2(r, t)− 2πλ)

∂g(x, y)

∂y
= sin 2πth1(r, t) +

1

2πr
cos 2πth2(r, t)−

cos 2πt

r
λ

∂g(x, y)

∂y
= sin 2πt(f1(r cos 2πt, r sin 2πt) cos 2πt+ f2(r cos 2πt, r sin 2πt) sin 2πt)

= + cos 2πt(f2(r cos 2πt, r sin 2πt) cos 2πt− f1(r cos 2πt, r sin 2πt) sin 2πt)− cos 2πt

r
λ

∂g(x, y)

∂y
=
y

r
(f1(x, y)

x

r
+ f2(x, y)

y

r
) +

x

r
(f2(x, y)

x

r
− f1(x, y)

y

r
)− x

r2
λ

∂g(x, y)

∂y
= 0f1(x, y) +

y2 + x2

r2
f2(x, y)− x

x2 + y2
λ

∂g(x, y)

∂y
= f2(x, y)− x

x2 + y2
λ.
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Step 7: We will conclude that ω − λη = dg as follows:

RS = dg

=
∂g(x, y)

∂x
dx+

∂g(x, y)

∂y
dy

= (f1(x, y) +
y

x2 + y2
λ)dx+ (f2(x, y)− x

x2 + y2
λ)dy

= (f1(x, y)dx+ f2(x, y)dy) +
ydx− xdy
x2 + y2

λ

= ω − λη.

Therefore, ω − λη is exact, as required for the “⇐” direction.
Since we proved both directions, we conclude that there is a unique λ ∈ R such that ω − λη is
exact, and this value of λ is 1

2π

∫
b1
ω, as required.
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Notes on intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions.
(Note: This section was not submitted for grading.)

1. (a) I really hope we all know how to solve this question.
(b) The proof that ∂b = 0 is mostly computational, so the real challenge was to prove that b
cannot be written as ∂c for any c ∈ C2(R2 − {0}). Let us assume for contradiction b = ∂c for
some c. Then, to apply Stokes’ theorem, we first need to pick a useful form ω ∈ Ω1(R2 − {0}),
and then we obtain

∫
b ω =

∫
∂c ω =

∫
c dω. To search for a useful ω, we first observe that we

do not know much about c, so it would be nice if ω is closed so that
∫
c dω = 0 regardless of

c. Then, to obtain a contradiction, we need
∫
b ω 6= 0. Here, a helpful insight is that ω cannot

be exact; otherwise, if ω = dη for some η ∈ Ω0(R2 − {0}), then Stokes’ theorem tells us that∫
b ω =

∫
b dη =

∫
∂b η =

∫
∂2c η =

∫
0 η = 0. This narrows our search further: ω should be closed

but not exact.
The next step is to recall encountering Problem 8 from last year’s Test 3 rejects while studying
for Test 3. That question asked to prove that the form ω = −ydx+xdy

x2+y2
∈ Ω1(R2 − {0}) is closed

but not exact. (Alternatively, Question 3 from this assignment may also have helped you realize
that −ydx+xdy

x2+y2
is closed but not exact, since it was used to adjust a closed-but-not-exact form

into a closed-and-exact form.) Then, the discussion above motivates us to pick this form for ω.
Indeed, after explicitly computing that dω = 0 and that

∫
b ω 6= 0, we are now done.

2. As stated in the textbook’s hint, the first step is to integrate the equation ω − λdx = dg across
[0, 1] to find λ. Next, the key insight is to generalize this hint: Integrating across a smaller interval
[0, x] gives us

∫ x
0 f(t)dt− λx = g(x)− g(0), which allows us to find g(x) up to a constant. This

helps us make the educated guess that g(x) =
∫ x
0 f(t)dt − λx. After this, we finish with some

simple computations.
Alternatively, we can rewrite the equation ω− λdx = dg in terms of the elementary 1-form dx to
obtain (f(x)− λ)dx = dg(x)

dt dx, so f(x)− λ = dg(x)
dt . Then, g(x) should be an antiderivative of

f(x)− λ, which also motivates the formula g(x) :=
∫ x
0 f(t)dt− λx.

3. This question was quite difficult, and admittedly, my solution was also rather long and complicated.
Let us break down the solution into steps and examine the motivation for each step.
Step 0: (i.e., proving the “⇒” direction): This question can be solved similarly to Question 2.
The main difficulty is determining which “interval” to integrate along. Since η is often written
as “dθ”, this motivates us to integrate in an “angular direction”, so we integrate along a circle
centred at the origin. To help us integrate along such a circle, we define the 1-cube br to map
[0, 1] onto the circle. Since we learned in Question 1 that ∂br = 0, this motivates us to use Stokes’
theorem to obtain

∫
br
dg =

∫
∂br

g = 0. Finally, we follow “simple” computations to expand and

evaluate
∫
br
dg, and then derive our value for λ.

Step 1: The textbook’s hint essentially tells us to do this step. Another motivation for this step
is that, in our solution for Step 0, it did not matter whether we use a radius of 1 or any other
radius, so we should obtain the same value of λ for any radius, so each 1

2π

∫
br
ω should equal the

same λ. Our technique for proving this using cr is somewhat motivated by the proof that ∂br = 0.
We obtained ∂br = 0 because the two ends of br closed in on themselves at (1, 0); similarly, cr
forms an annulus that closes in on itself on the positive x-axis, and we are left with two faces, b1
and br, so ∂cr = br − b1. Then, we can compare

∫
br
ω with

∫
b1
ω using

∫
∂cr

ω. Finally, we prove
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∫
∂cr

ω = 0 using the standard technique of applying Stokes’ theorem.
Step 2: Since we have “η = dθ”, it makes sense to write ω in terms of polar coordinates as well.
Step 3: We want to use the fact that ω is closed, so we expand p∗(dω) = 0, and it happens to

give us ∂h2(r,t)
∂r = ∂h1(r,t)

∂t . This happens to be useful in Step 6.
Step 4: Similarly to Step 2, we want to re-express λ in terms of the polar coordinates obtained
in Step 2.
Step 5: Our definition for g for this problem is motivated by our definition for g in Question 2. In
Question 2, we defined g by integrating ω−λdx, so for this problem, we obtain a similar definition
for g by “integrating ω− λη”. This time, there are two directions to integrate along: the angular
direction, then the radial direction. Here, we see why it was convenient to find h1 and h2 from
Step 2: Now, we can easily integrate ω along the angular and radial directions by integrating h2
and h1, respectively.
However, a problem could potentially occur if, after integrating in the angular direction along an
entire circle, the final value at t = 1 does not equal the initial value at t = 0, meaning that
g is not continuous. Fortunately, applying our work from Step 4, we find that the correctional
term −2πλt makes g well-defined. Moreover, because of our work from Step 1, the same g is
well-defined at all possible radii r, not just on the unit circle.
Step 6: My approach for this step is heavily motivated by Assignment 15 Question 3, where we
were also able to find an unknown form by creating a system of linear equations using known
forms.
Step 7: We are finally done! Yay!
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