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1. For all vector fields F = F1e1 + F2e2 + F3e3 on R3, we define:

ω1
F := F1dx+ F2dy + F3dz,

ω2
F := F1dy ∧ dz + F2dz ∧ dx+ F3dx ∧ dy.

(a) We are given a function f : R3 → R and a vector field F = F1e1+F2e2+F3e3 on R3. First, we
will prove that df = ω1

grad f . To begin, we know by definition that grad f = ∂f
∂xe1 + ∂f

∂y e2 + ∂f
∂z e3.

As a result,

ω1
grad f =

∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

= dx ∧ ∂

∂x
f + dy ∧ ∂

∂y
f + dz ∧ ∂

∂z
f

= df,

so df = ω1
grad f , as required.

Additionally, we will prove that d(ω1
F ) = ω2

curlF . To begin, we are given by definition that
curlF = (∂F3

∂y −
∂F2
∂z )e1 + (∂F1

∂z −
∂F3
∂x )e2 + (∂F2

∂x −
∂F1
∂y )e3. As a result:

ω2
curlF = (

∂F3

∂y
− ∂F2

∂z
)dy ∧ dz + (

∂F1

∂z
− ∂F3

∂x
)dz ∧ dx+ (

∂F2

∂x
− ∂F1

∂y
)dx ∧ dy.

Moreover, we can compute d(ω1
F ) as follows:

d(ω1
F ) = d(F1dx+ F2dy + F3dz)

= dx ∧ ∂

∂x
(F1dx+ F2dy + F3dz) + dy ∧ ∂

∂y
(F1dx+ F2dy + F3dz)

= + dz ∧ ∂

∂z
(F1dx+ F2dy + F3dz)

=
∂F1

∂x
dx ∧ dx+

∂F2

∂x
dx ∧ dy +

∂F3

∂x
dx ∧ dz +

∂F1

∂y
dy ∧ dx+

∂F2

∂y
dy ∧ dy +

∂F3

∂y
dy ∧ dz

= +
∂F1

∂z
dz ∧ dx+

∂F2

∂z
dz ∧ dy +

∂F3

∂z
dz ∧ dz

= 0 +
∂F2

∂x
dx ∧ dy − ∂F3

∂x
dz ∧ dx− ∂F1

∂y
dx ∧ dy + 0 +

∂F3

∂y
dy ∧ dz +

∂F1

∂z
dz ∧ dx− ∂F2

∂z
dy ∧ dz + 0

= (
∂F3

∂y
− ∂F2

∂z
)dy ∧ dz + (

∂F1

∂z
− ∂F3

∂x
)dz ∧ dx+ (

∂F2

∂x
− ∂F1

∂y
)dx ∧ dy

= ω2
curlF .

Therefore, d(ω1
F ) = ω2

curlF , as required.
Finally, we will prove that d(ω2

F ) = (divF )dx ∧ dy ∧ dz. To begin, we know by definition that
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divF = ∂F1
∂x + ∂F2

∂y + ∂F3
∂z . Moreover, we can compute d(ω2

F ) as follows:

d(ω2
F ) = d(F1dy ∧ dz + F2dz ∧ dx+ F3dx ∧ dy)

= dx ∧ ∂

∂x
(F1dy ∧ dz + F2dz ∧ dx+ F3dx ∧ dy)

= + dy ∧ ∂

∂y
(F1dy ∧ dz + F2dz ∧ dx+ F3dx ∧ dy)

= + dz ∧ ∂

∂z
(F1dy ∧ dz + F2dz ∧ dx+ F3dx ∧ dy)

=
∂F1

∂x
dx ∧ dy ∧ dz +

∂F2

∂x
dx ∧ dz ∧ dx+

∂F3

∂x
dx ∧ dx ∧ dy

= +
∂F1

∂y
dy ∧ dy ∧ dz +

∂F2

∂y
dy ∧ dz ∧ dx+

∂F3

∂y
dy ∧ dx ∧ dy

= +
∂F1

∂z
dz ∧ dy ∧ dz +

∂F2

∂z
dz ∧ dz ∧ dx+

∂F3

∂z
dz ∧ dx ∧ dy

=
∂F1

∂x
dx ∧ dy ∧ dz + 0 + 0 + 0 +

∂F2

∂y
dx ∧ dy ∧ dz + 0 + 0 + 0 +

∂F3

∂z
dx ∧ dy ∧ dz

= (
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
)dx ∧ dy ∧ dz

= (divF )dx ∧ dy ∧ dz.

Therefore, d(ω2
F ) = (divF )dx ∧ dy ∧ dz, as required.

(b) Next, we will use part (a) to prove that curl grad f = 0.
Applying part (a) twice, we have ω2

curl grad f = d(ω1
grad f ) = d(df) = 0. Next, if we write

curl grad f = F1e1 + F2e2 + F3e3, then we obtain:

0 = ω2
curl grad f = F1dy ∧ dz + F2dz ∧ dx+ F3dx ∧ dy.

Since dy ∧ dz, dz ∧ dx, dx ∧ dy are linearly independent, it follows that F1 = F2 = F3 = 0, so
curl grad f = 0, as required.
Finally, we will use part (a) to prove that div curlF = 0.
Applying part (a) twice, we have (div curlF )dx ∧ dy ∧ dz = d(ω2

curlF ) = d(d(ω1
F )) = 0. Since

dx ∧ dy ∧ dz is nonzero, it follows that div curlF = 0, as required.
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2. We are given two open sets U, V ⊆ Rn which are diffeomorphic, so there exists a differentiable
function g : U → V with a differentiable inverse g−1 : V → U . We are also given that every
closed form on U is exact. Then, we will show that every closed form on V is also exact.
Let ω be any arbitrary closed form on V . Then, dω = 0. Next, consider the form g∗ω on U .
Applying Spivak’s Theorem 4-10(4), we obtain d(g∗ω) = g∗(dω) = g∗(0) = 0, so g∗ω is a closed
form on U . Since we are given that every closed form on U is exact, it follows that g∗ω = dη for
some form η on U . Then, we apply (g−1)∗ to both sides to obtain:

(g−1)∗(g∗ω) = (g−1)∗(dη)

((g−1)∗ ◦ g∗)ω = d((g−1)∗η) (Applying Spivak’s Theorem 4-10(4))

(g ◦ g−1)∗ω = d((g−1)∗η)

ω = d((g−1)∗η).

Since (g−1)∗η is a form on V , this proves that ω is exact. Therefore, every closed form on V is
exact, as required.
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3. Given the polar coordinates x = r cos θ, y = r sin θ in R2
(x,y), we will prove that:

dθ =
−y

x2 + y2
dx+

x

x2 + y2
dy

where θ is defined.
First, we can express dx in terms of dr and dθ as follows:

dx = d(r cos θ)

= dr ∧ cos θ + r ∧ d(cos θ) (Leibniz rule)

= cos θdr + r ∧ (
∂ cos θ

∂x
dx+

∂ cos θ

∂y
dy)

= cos θdr + r ∧ (− sin θ
∂θ

∂x
dx− sin θ

∂θ

∂y
dy) (Chain rule)

= cos θdr − r sin θ(
∂θ

∂x
dx+

∂θ

∂y
dy)

= cos θdr − r sin θdθ. (1)

Similarly, we can express dy in terms of dr and dθ as follows:

dy = d(r sin θ)

= dr ∧ sin θ + r ∧ d(sin θ) (Leibniz rule)

= sin θdr + r ∧ (
∂ sin θ

∂x
dx+

∂ sin θ

∂y
dy)

= sin θdr + r ∧ (cos θ
∂θ

∂x
dx+ cos θ

∂θ

∂y
dy) (Chain rule)

= sin θdr + r cos θ(
∂θ

∂x
dx+

∂θ

∂y
dy)

= sin θdr + r cos θdθ. (2)

Next, if we subtract sin θ times (1) from cos θ times (2), we obtain:

cos θdy − sin θdx = cos θ sin θdr + r cos2 θdθ − sin θ cos θdr + r sin2 θdθ

− sin θdx+ cos θdy = r(cos2 θ + sin2 θ)dθ

− sin θdx+ cos θdy = rdθ

−r sin θ

r2
dx+

r cos θ

r2
dy = dθ

−y
r2(cos2 θ + sin2 θ)

dx+
x

r2(cos2 θ + sin2 θ)
dy = dθ

−y
r2 cos2 θ + r2 sin2 θ

dx+
x

r2 cos2 θ + r2 sin2 θ
dy = dθ

−y
x2 + y2

dx+
x

x2 + y2
dy = dθ.

Therefore, dθ = −y
x2+y2

dx+ x
x2+y2

dy, as required.
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4. We are given the following forms in R3:

ω = xydx+ 3dy − yzdz,

η = xdx− yz2dy + 2xdz.

Then, we will verify by direct computations that d(dω) = 0 and that d(ω∧η) = (dω)∧η−ω∧(dη).
First, we can compute dω as follows:

dω = d(xydx+ 3dy − yzdz)

= dx ∧ ∂

∂x
(xydx+ 3dy − yzdz) + dy ∧ ∂

∂y
(xydx+ 3dy − yzdz) + dz ∧ ∂

∂z
(xydx+ 3dy − yzdz)

= dx ∧ (ydx+ 0dy + 0dz) + dy ∧ (xdx+ 0dy − zdz) + dz ∧ (0dx+ 0dy − ydz)
= ydx ∧ dx+ xdy ∧ dx− zdy ∧ dz − ydz ∧ dz
= 0− xdx ∧ dy − zdy ∧ dz + 0

= −xdx ∧ dy − zdy ∧ dz.

Next, we can compute d(dω) as follows:

d(dω) = d(−xdx ∧ dy − zdy ∧ dz)

= dx ∧ ∂

∂x
(−xdx ∧ dy − zdy ∧ dz) + dy ∧ ∂

∂y
(−xdx ∧ dy − zdy ∧ dz)

= + dz ∧ ∂

∂z
(−xdx ∧ dy − zdy ∧ dz)

= dx ∧ (−dx ∧ dy) + dy ∧ 0 + dz ∧ (−dy ∧ dz)
= −dx ∧ dx ∧ dy − dz ∧ dy ∧ dz
= 0.

Therefore, d(dω) = 0, as required.

Next, we can compute ω ∧ η as follows:

ω ∧ η = (xydx+ 3dy − yzdz) ∧ (xdx− yz2dy + 2xdz)

= x2ydx ∧ dx− xy2z2dx ∧ dy + 2x2ydx ∧ dz + 3xdy ∧ dx− 3yz2dy ∧ dy + 6xdy ∧ dz
= − xyzdz ∧ dx+ y2z3dz ∧ dy − 2xyzdz ∧ dz
= 0− xy2z2dx ∧ dy + 2x2ydx ∧ dz − 3xdx ∧ dy + 0 + 6xdy ∧ dz + xyzdx ∧ dz − y2z3dy ∧ dz + 0

= (−xy2z2 − 3x)dx ∧ dy + (2x2y + xyz)dx ∧ dz + (6x− y2z3)dy ∧ dz.
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Next, we can compute d(ω ∧ η) as follows:

d(ω ∧ η) = d((−xy2z2 − 3x)dx ∧ dy + (2x2y + xyz)dx ∧ dz + (6x− y2z3)dy ∧ dz)

= dx ∧ ∂

∂x
((−xy2z2 − 3x)dx ∧ dy + (2x2y + xyz)dx ∧ dz + (6x− y2z3)dy ∧ dz)

= + dy ∧ ∂

∂y
((−xy2z2 − 3x)dx ∧ dy + (2x2y + xyz)dx ∧ dz + (6x− y2z3)dy ∧ dz)

= + dz ∧ ∂

∂z
((−xy2z2 − 3x)dx ∧ dy + (2x2y + xyz)dx ∧ dz + (6x− y2z3)dy ∧ dz)

= dx ∧ ((−y2z2 − 3)dx ∧ dy + (4xy + yz)dx ∧ dz + 6dy ∧ dz)
= + dy ∧ (−2xyz2dx ∧ dy + (2x2 + xz)dx ∧ dz − 2yz3dy ∧ dz)
= + dz ∧ (−2xy2zdx ∧ dy + xydx ∧ dz − 3y2z2dy ∧ dz)
= (−y2z2 − 3)dx ∧ dx ∧ dy + (4xy + yz)dx ∧ dx ∧ dz + 6dx ∧ dy ∧ dz
= − 2xyz2dy ∧ dx ∧ dy + (2x2 + xz)dy ∧ dx ∧ dz − 2yz3dy ∧ dy ∧ dz
= − 2xy2zdz ∧ dx ∧ dy + xydz ∧ dx ∧ dz − 3y2z2dz ∧ dy ∧ dz
= 0 + 0 + 6dx ∧ dy ∧ dz + 0− (2x2 + xz)dx ∧ dy ∧ dz + 0− 2xy2zdx ∧ dy ∧ dz + 0 + 0

= (−2xy2z − 2x2 − xz + 6)dx ∧ dy ∧ dz.

Next, we can compute (dω) ∧ η as follows:

(dω) ∧ η = (−xdx ∧ dy − zdy ∧ dz) ∧ (xdx− yz2dy + 2xdz)

= −x2dx ∧ dy ∧ dx+ xyz2dx ∧ dy ∧ dy − 2x2dx ∧ dy ∧ dz
= − xzdy ∧ dz ∧ dx+ yz3dy ∧ dz ∧ dy − 2xzdy ∧ dz ∧ dz
= 0 + 0− 2x2dx ∧ dy ∧ dz − xzdx ∧ dy ∧ dz + 0 + 0

= (−2x2 − xz)dx ∧ dy ∧ dz.

Next, we can compute dη as follows:

dη = d(xdx− yz2dy + 2xdz)

= dx ∧ ∂

∂x
(xdx− yz2dy + 2xdz) + dy ∧ ∂

∂y
(xdx− yz2dy + 2xdz) + dz ∧ ∂

∂z
(xdx− yz2dy + 2xdz)

= dx ∧ (dx+ 2dz) + dy ∧ (−z2dy) + dz ∧ (−2yzdy)

= dx ∧ dx+ 2dx ∧ dz − z2dy ∧ dy − 2yzdz ∧ dy
= 0 + 2dx ∧ dz + 0 + 2yzdy ∧ dz
= 2dx ∧ dz + 2yzdy ∧ dz.

Next, we can compute ω ∧ dη as follows:

ω ∧ dη = (xydx+ 3dy − yzdz) ∧ (2dx ∧ dz + 2yzdy ∧ dz)
= 2xydx ∧ dx ∧ dz + 2xy2zdx ∧ dy ∧ dz + 6dy ∧ dx ∧ dz + 6yzdy ∧ dy ∧ dz
= − 2yzdz ∧ dx ∧ dz − 2y2z2dz ∧ dy ∧ dz
= 0 + 2xy2zdx ∧ dy ∧ dz − 6dx ∧ dy ∧ dz + 0 + 0 + 0

= (2xy2z − 6)dx ∧ dy ∧ dz.
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Finally, we can compute dω ∧ η − ω ∧ dη as follows:

dω ∧ η − ω ∧ dη = (−2x2 − xz)dx ∧ dy ∧ dz − (2xy2z − 6)dx ∧ dy ∧ dz
= (−2xy2z − 2x2 − xz + 6)dx ∧ dy ∧ dz
= d(ω ∧ η).

Therefore, d(ω ∧ η) = dω ∧ η − ω ∧ dη, as required.
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5. We are given the form:

ω :=

n∑
i=1

(−1)i−1
xi
|x|p

dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

in Ωn−1(Rn − {0}), where p is some positive real number.
(a) We will compute dω as follows:

dω =
n∑

j=1

dxj ∧
∂

∂xj

n∑
i=1

(−1)i−1
xi
|x|p

dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=
n∑

j=1

n∑
i=1

(
∂

∂xj
(−1)i−1

xi
|x|p

)dxj ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

If i 6= j, then dxj ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn contains a repeating dxj , so it equals zero. Then,
the only non-vanishing terms in the above summation occur when i = j, so:

dω =

n∑
i=1

(
∂

∂xi
(−1)i−1

xi
|x|p

)dxi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=

n∑
i=1

(
∂

∂xi
(−1)i−1

xi
|x|p

)(−1)dx1 ∧ dxi ∧ dx2 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

= · · · (Apply i− 2 remaining transpositions)

=
n∑

i=1

(
∂

∂xi
(−1)i−1

xi
|x|p

)(−1)i−1dx1 ∧ · · · ∧ dxi ∧ · · · ∧ dxn

=
n∑

i=1

∂

∂xi

xi
|x|p

dx1 ∧ · · · ∧ dxn

=

n∑
i=1

( ∂
∂xi
xi)|x|p − xi( ∂

∂xi
|x|p)

|x|2p
dx1 ∧ · · · ∧ dxn

=
n∑

i=1

|x|p − pxi|x|p−1 ∂
∂xi

√
x21 + · · ·+ x2i + · · ·+ x2n

|x|2p
dx1 ∧ · · · ∧ dxn

=

n∑
i=1

|x|p − pxi|x|p−1 2xi

2
√

x2
1+···+x2

i+···+x2
n

|x|2p
dx1 ∧ · · · ∧ dxn

=

n∑
i=1

|x|p − px2i |x|
p−2

|x|2p
dx1 ∧ · · · ∧ dxn

=

n∑
i=1

|x|2 − px2i
|x|p+2 dx1 ∧ · · · ∧ dxn

=
1

|x|p+2 (

n∑
i=1

|x|2 − p
n∑

i=1

x2i )dx1 ∧ · · · ∧ dxn

=
1

|x|p+2 (n|x|2 − p|x|2)dx1 ∧ · · · ∧ dxn

=
n− p
|x|p

dx1 ∧ · · · ∧ dxn.
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Therefore, dω =
n− p
|x|p

dx1 ∧ · · · ∧ dxn , as required.

(b) We will determine which values of p give dω = 0.
From part (a), we have dω = n−p

|x|p dx1 ∧ · · · ∧ dxn, so dω = 0 if and only if n−p
|x|p = 0, so p = n ,

as required.
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Notes on intuition

Now, let us develop some intuition for how to approach these problems and motivate these solutions.
(Note: This section was not submitted for grading.)

1. This was a computational problem, not much to say here.

2. The main idea for this problem was to use g∗ and (g−1)∗ to convert between forms on U and
forms on V . As mentioned by the grader, there was some confusion between g∗ and (g−1)∗. As
a mnemonic/rule of thumb, pullbacks will pull in the opposite direction of the original object; in
this case, g maps from U to V , so g∗ maps in the opposite direction, from forms on V to forms
on U .

3. As explained in the grader’s comments, we cannot assume that θ = arctan( yx) because tan is not
injective on [0, 2π). Instead, we have explicit formulas for x and y in terms of r and θ, which
motivates us to directly compute dx and dy in terms of dr and dθ. This gives us a system of
linear equations where dr and dθ are the ”variables”. Then, we can solve this system of linear
equations to find dθ without an explicit formula for dθ.

4. This was a computational problem, not much to say here.

5. This was a computational problem, not much to say here.
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