MAT257 Assignment 14 (Tangent vectors)
 (Author's name here)
 February 18, 2022

1. We are given differentiable functions $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Then, we will show that $d(f g)=f d g+g d f$. Indeed, we can evaluate $d(f g)$ as follows:

$$
\begin{aligned}
d(f g) & =\sum_{i=1}^{n} \frac{\partial(f g)}{\partial x_{i}} \varphi_{i} \\
& =\sum_{i=1}^{n}\left(f \frac{\partial g}{\partial x_{i}}+g \frac{\partial f}{\partial x_{i}}\right) \varphi_{i} \\
& =f \sum_{i=1}^{n} \frac{\partial g}{\partial x_{i}} \varphi_{i}+g \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \varphi_{i} \\
& =f d g+g d f,
\end{aligned}
$$

$$
=\sum_{i=1}^{n}\left(f \frac{\partial g}{\partial x_{i}}+g \frac{\partial f}{\partial x_{i}}\right) \varphi_{i} \quad \text { (Product rule for partial derivatives) }
$$

as required.
2. We are given a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$, and we define the curve $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by $\gamma(t)=(t, f(t))$. Then, we will show that the endpoint of the tangent vector to γ at t lies on the tangent line of f at $(t, f(t))$.
First, we will find the tangent vector to γ at t. Let the coordinate representation of $\gamma(t)$ be $\left(\gamma^{1}(t), \gamma^{2}(t)\right)$. Then, by definition, the tangent vector to γ at t is $\left(\left(\gamma^{1}\right)^{\prime}(t),\left(\gamma^{2}\right)^{\prime}(t)\right)_{\gamma(t)}$, which equals:

$$
\begin{aligned}
\left(\left(\gamma^{1}\right)^{\prime}(t),\left(\gamma^{2}\right)^{\prime}(t)\right)_{\gamma(t)} & =\left(\frac{d}{d t} t, \frac{d}{d t} f(t)\right)_{\gamma(t)} \\
& =\left(1, f^{\prime}(t)\right)_{\gamma(t)} .
\end{aligned}
$$

Then, the endpoint of this tangent vector is $\left(\gamma^{1}(t)+1, \gamma^{2}(t)+f^{\prime}(t)\right)=\left(t+1, f(t)+f^{\prime}(t)\right)$. Next, by definition, the tangent line of f at $(t, f(t))$ has the equation $y-f(t)=f^{\prime}(t)(x-t)$. We will show that the point $\left(t+1, f(t)+f^{\prime}(t)\right)$ is on this line using the following LS-RS proof:

$$
\begin{aligned}
\mathrm{LS} & =y-f(t) \\
& =\left(f(t)+f^{\prime}(t)\right)-f(t) \\
& =f^{\prime}(t)
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{RS} & =f^{\prime}(t)(x-t) \\
& =f^{\prime}(t)((t+1)-t) \\
& =f^{\prime}(t)
\end{aligned}
$$

Therefore, $\mathrm{LS}=\mathrm{RS}$, so the endpoint of the tangent vector to γ at t lies on the tangent line of f at $(t, f(t))$, as required.
3. We are given a differentiable curve $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ such that $|\gamma(t)|=1$ for all t. Then, we will show that the tangent vector to $\gamma(t)$ at t is perpendicular to $(\gamma(t))_{\gamma(t)}$.
First, since $|\gamma(t)|=1$, we also know $|\gamma(t)|^{2}=1$. Next, if we split $\gamma(t)$ into its coordinates $\left(\gamma^{1}(t), \gamma^{2}(t)\right)$, it follows that $\left(\gamma^{1}(t)\right)^{2}+\left(\gamma^{2}(t)\right)^{2}=1$. Taking $\frac{d}{d t}$ of both sides, we obtain:

$$
\begin{align*}
\frac{d}{d t}\left[\left(\gamma^{1}(t)\right)^{2}+\left(\gamma^{2}(t)\right)^{2}\right] & =\frac{d}{d t} 1 \\
2 \gamma^{1}(t)\left(\gamma^{1}\right)^{\prime}(t)+2 \gamma^{2}(t)\left(\gamma^{2}\right)^{\prime}(t) & =0 \\
\gamma^{1}(t)\left(\gamma^{1}\right)^{\prime}(t)+\gamma^{2}(t)\left(\gamma^{2}\right)^{\prime}(t) & =0 . \tag{*}
\end{align*}
$$

Next, by definition, the tangent vector to $\gamma(t)$ at t is $\left(\left(\gamma^{1}\right)^{\prime}(t),\left(\gamma^{2}\right)^{\prime}(t)\right)_{\gamma(t)}$. Then, the inner product of this tangent vector with $\gamma(t)_{\gamma(t)}$ (using the dot product in $T_{\gamma(t)} \mathbb{R}^{2}$) is:

$$
\begin{aligned}
\left\langle\left(\left(\gamma^{1}\right)^{\prime}(t),\left(\gamma^{2}\right)^{\prime}(t)\right)_{\gamma(t)}, \gamma(t)_{\gamma(t)}\right\rangle & =\left\langle\left(\left(\gamma^{1}\right)^{\prime}(t),\left(\gamma^{2}\right)^{\prime}(t)\right)_{\gamma(t)},\left(\gamma^{1}(t), \gamma^{2}(t)\right)_{\gamma(t)}\right\rangle \\
& =\left(\gamma^{1}\right)^{\prime}(t) \gamma^{1}(t)+\left(\gamma^{2}\right)^{\prime}(t) \gamma^{2}(t) \\
& =0 . \quad \text { (Applying }(*))
\end{aligned}
$$

Therefore, since this inner product equals zero, the tangent vector to $\gamma(t)$ at t is perpendicular to $\gamma(t)_{\gamma(t)}$, as required.
4. Given a differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we define a vector field grad f by:

$$
(\operatorname{grad} f)(p):=\frac{\partial}{\partial x_{1}} f(p)\left(e_{1}\right)_{p}+\cdots+\frac{\partial}{\partial x_{n}} f(p)\left(e_{n}\right)_{p}
$$

Then, if v_{p} is some other tangent vector at p, we will prove that $D_{v_{p}} f=\left\langle(\operatorname{grad} f)(p), v_{p}\right\rangle$.
First, let the coordinate representation of v_{p} be $v_{p}=\sum_{i=1}^{n} v_{i}\left(e_{i}\right)_{p}=\sum_{i=1}^{n} v_{i} \frac{\partial}{\partial x_{i}}$. Then, we will prove that $D_{v_{p}} f=\left\langle(\operatorname{grad} f)(p), v_{p}\right\rangle$ using the following LS-RS proof:

$$
\begin{array}{rlrl}
\mathrm{LS}=D_{v_{p}} f & \mathrm{RS} & =\left\langle(\operatorname{grad} f)(p), v_{p}\right\rangle \\
=\sum_{i=1}^{n} v_{i} \frac{\partial}{\partial x_{i}} f(p) & & =\left\langle\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} f(p)\left(e_{i}\right)_{p}, \sum_{i=1}^{n} v_{i}\left(e_{i}\right)_{p}\right\rangle \\
& =\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} f(p) \cdot v_{i} \\
& =\text { LS } .
\end{array}
$$

Therefore, $D_{v_{p}} f=\left\langle(\operatorname{grad} f)(p), v_{p}\right\rangle$, as required.
For a geometric interpretation, we know that $\left\langle(\operatorname{grad} f)(p), v_{p}\right\rangle$ is maximized when v_{p} points in the same direction as $(\operatorname{grad} f)(p)$. Then, $D_{v_{p}} f$ is maximized when v_{p} points in the same direction as $(\operatorname{grad} f)(p)$, so f increases most quickly in the direction of $(\operatorname{grad} f)(p)$, as required.

Notes on intuition

I do not have much to comment on for this assignment. The problems can mostly be solved by tracing definitions.

