MAT257 Assignment 14 (Tangent vectors) (Author's name here)

February 18, 2022

1. We are given differentiable functions $f, g : \mathbb{R}^n \to \mathbb{R}$. Then, we will show that d(fg) = fdg + gdf. Indeed, we can evaluate d(fg) as follows:

$$\begin{split} d(fg) &= \sum_{i=1}^{n} \frac{\partial (fg)}{\partial x_{i}} \varphi_{i} \\ &= \sum_{i=1}^{n} (f \frac{\partial g}{\partial x_{i}} + g \frac{\partial f}{\partial x_{i}}) \varphi_{i} \qquad (\\ &= f \sum_{i=1}^{n} \frac{\partial g}{\partial x_{i}} \varphi_{i} + g \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \varphi_{i} \\ &= f dg + g df, \end{split}$$

(Product rule for partial derivatives)

as required.

2. We are given a differentiable function $f : \mathbb{R} \to \mathbb{R}$, and we define the curve $\gamma : \mathbb{R} \to \mathbb{R}^2$ by $\gamma(t) = (t, f(t))$. Then, we will show that the endpoint of the tangent vector to γ at t lies on the tangent line of f at (t, f(t)).

First, we will find the tangent vector to γ at t. Let the coordinate representation of $\gamma(t)$ be $(\gamma^1(t), \gamma^2(t))$. Then, by definition, the tangent vector to γ at t is $((\gamma^1)'(t), (\gamma^2)'(t))_{\gamma(t)}$, which equals:

$$((\gamma^{1})'(t), (\gamma^{2})'(t))_{\gamma(t)} = (\frac{d}{dt}t, \frac{d}{dt}f(t))_{\gamma(t)}$$
$$= (1, f'(t))_{\gamma(t)}.$$

Then, the endpoint of this tangent vector is $(\gamma^1(t) + 1, \gamma^2(t) + f'(t)) = (t + 1, f(t) + f'(t))$. Next, by definition, the tangent line of f at (t, f(t)) has the equation y - f(t) = f'(t)(x - t). We will show that the point (t + 1, f(t) + f'(t)) is on this line using the following LS-RS proof:

$$LS = y - f(t) = (f(t) + f'(t)) - f(t) = f'(t) RS = f'(t)(x - t) = f'(t)((t + 1) - t) = f'(t).$$

Therefore, LS = RS, so the endpoint of the tangent vector to γ at t lies on the tangent line of f at (t, f(t)), as required.

3. We are given a differentiable curve $\gamma : [0,1] \to \mathbb{R}^2$ such that $|\gamma(t)| = 1$ for all t. Then, we will show that the tangent vector to $\gamma(t)$ at t is perpendicular to $(\gamma(t))_{\gamma(t)}$.

First, since $|\gamma(t)| = 1$, we also know $|\gamma(t)|^2 = 1$. Next, if we split $\gamma(t)$ into its coordinates $(\gamma^1(t), \gamma^2(t))$, it follows that $(\gamma^1(t))^2 + (\gamma^2(t))^2 = 1$. Taking $\frac{d}{dt}$ of both sides, we obtain:

$$\frac{d}{dt}[(\gamma^{1}(t))^{2} + (\gamma^{2}(t))^{2}] = \frac{d}{dt}1$$

$$2\gamma^{1}(t)(\gamma^{1})'(t) + 2\gamma^{2}(t)(\gamma^{2})'(t) = 0$$

$$\gamma^{1}(t)(\gamma^{1})'(t) + \gamma^{2}(t)(\gamma^{2})'(t) = 0. \qquad (*)$$

Next, by definition, the tangent vector to $\gamma(t)$ at t is $((\gamma^1)'(t), (\gamma^2)'(t))_{\gamma(t)}$. Then, the inner product of this tangent vector with $\gamma(t)_{\gamma(t)}$ (using the dot product in $T_{\gamma(t)}\mathbb{R}^2$) is:

$$\langle ((\gamma^{1})'(t), (\gamma^{2})'(t))_{\gamma(t)}, \gamma(t)_{\gamma(t)} \rangle = \langle ((\gamma^{1})'(t), (\gamma^{2})'(t))_{\gamma(t)}, (\gamma^{1}(t), \gamma^{2}(t))_{\gamma(t)} \rangle$$

= $(\gamma^{1})'(t)\gamma^{1}(t) + (\gamma^{2})'(t)\gamma^{2}(t)$
= 0. (Applying (*))

Therefore, since this inner product equals zero, the tangent vector to $\gamma(t)$ at t is perpendicular to $\gamma(t)_{\gamma(t)}$, as required.

4. Given a differentiable function $f : \mathbb{R}^n \to \mathbb{R}$, we define a vector field grad f by:

$$(\operatorname{grad} f)(p) := \frac{\partial}{\partial x_1} f(p)(e_1)_p + \dots + \frac{\partial}{\partial x_n} f(p)(e_n)_p.$$

Then, if v_p is some other tangent vector at p, we will prove that $D_{v_p}f = \langle (\operatorname{grad} f)(p), v_p \rangle$. First, let the coordinate representation of v_p be $v_p = \sum_{i=1}^n v_i (e_i)_p = \sum_{i=1}^n v_i \frac{\partial}{\partial x_i}$. Then, we will prove that $D_{v_p}f = \langle (\operatorname{grad} f)(p), v_p \rangle$ using the following LS-RS proof:

$$LS = D_{v_p} f$$

$$= \sum_{i=1}^{n} v_i \frac{\partial}{\partial x_i} f(p)$$

$$RS = \langle (\operatorname{grad} f)(p), v_p \rangle$$

$$= \langle \sum_{i=1}^{n} \frac{\partial}{\partial x_i} f(p)(e_i)_p, \sum_{i=1}^{n} v_i(e_i)_p \rangle$$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial x_i} f(p) \cdot v_i$$

$$= LS.$$

Therefore, $D_{v_p}f = \langle (\operatorname{grad} f)(p), v_p \rangle$, as required.

For a geometric interpretation, we know that $\langle (\operatorname{grad} f)(p), v_p \rangle$ is maximized when v_p points in the same direction as $(\operatorname{grad} f)(p)$. Then, $D_{v_p}f$ is maximized when v_p points in the same direction as $(\operatorname{grad} f)(p)$, so f increases most quickly in the direction of $(\operatorname{grad} f)(p)$, as required. \Box

Notes on intuition

I do not have much to comment on for this assignment. The problems can mostly be solved by tracing definitions.