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1. We will find a good way of identifying A*(R3) and A?(R?) with R3.
First, let (e; = (1,0,0),es = (0,1,0),e3 = (0,0,1)) be the standard basis for R?, and let
(¢1, P2, ¢3) be the corresponding dual basis for A*(R3). Then, since (1,92, 3) is a basis for
A (R3), we can identify A'(R?) with R? by identifying ¢1, 2, @3 with e, e, e3, respectively.
Next, the standard basis (wr);ez2 for A*(R?) contains the alternating tensors was = @2 A 3,
w1z = p1 A3, and wia = 1 Aws. Then, (02 A3, 1 Aps, 1 Aps) is a basis for A2(R3). Since
@03 A\ p1 = —p1 A 3, we obtain that (a2 A @3, 03 A 1,01 A p2) is another basis for A2(R3). As
a result, we can identify A%2(R3) with R? by identifying v2 A @3, 03 A @1, 1 A 02 with e1, ea, €3,
respectively.
Next, under these identifications, the wedge product A : A*(R3) x AL(R3) — A?(R?) becomes a
map P : R3 x R3 — R3. Then, we will check that P is the cross product on R3.
Let (a1,a2,as), (b1, b2, bs) be any two vectors in R3. Then, by definition, their cross product is:

(a1, a2, a3) x (b1,ba,b3) = (azbs — asba, azby — arbs, arby — asby).
Additionally, we can compute P((a1,az,as3), (b1, ba,bs)) as follows:

P((a1,az,a3), (b1,b2,b3))
= P(a161 + ases + ages, bier + boes + b3€3)

= (a1p1 + azp2 + azpsz) A (brp1 + baps + b3ps) (Applying identification)
= a1bip1 A w1 + arbepr A w2 + a1bspr A @3 + azbipa A @1 + asbapa A 2 + agbzpa A o3
+ azbip3z A 1 + azbaps A oo + azbsps A p3 (Wedge product is bilinear)

=0+ arbap1 A w2 — arbzps A o1 — azbrp1 A 2 + 0+ agbspa A @3

+ azbips N 1 — azbapa A p3 + 0
= (a2b3 — agb2)p2 A 3 + (agby — a1b3)ps A o1 + (a1ba — azb1)p1 A o
= (agbs — asgba)er + (asby — a1bs)es + (a1be — agby)es (Applying identification)
= (agbs — asba, azby — ajbs, a1by — azby)
= (

ai,az,az) x (b1, ba,b3).

Therefore, P is the cross product on R?, as required. O



2. For each of the linear maps given below, we will determine whether it is orientation preserving or
reversing, assuming the standard orientation for each R".

(@) Ly : R?2 = R?, Ly(z,5) = (—z,y).

First, consider the standard basis 31 := ((1,0),(0,1)) of R2. Then, L; pushes this basis to the
basis B2 := (L1(1,0),L1(0,1)) of R2. If we use the same orientation for both instances of R?,
then L is orientation preserving if and only if 51 and B3 have the same orientation. Moreover, the
change of basis matrix between (35 and 31 is the matrix representing L; (under the standard basis
of RQ), so 51 and By have the same orientation if and only if det Ly > 0. Thus, L; is orientation
preserving if det Ly > 0, and L is orientation reversing if det L1 < 0.

Next, since L1(1,0) = (—1,0), and since L1(0,1) = (0, 1), the matrix representing L1 (under the

standard basis of R?) is _01 (1) . This matrix has a determinant of (—1)(1)—(0)(0) = -1 < 0.
Thus, det Ly < 0, so L is orientation reversing, as required. O

(b) Ly :R? — RQ: L?(’ray) = (y,x)
Similarly to part (a), Lo is orientation preserving if det Lo > 0, and Lo is orientation reversing if
det Ly < 0. Next, since La(1,0) = (0,1) and L2(0,1) = (1,0), the matrix representing Lo (under

the standard basis of R?) is (1) (1) . This matrix has a determinant of (0)(0) —(1)(1) = -1 < 0.
Thus, det Ly < 0, so Lo is orientation reversing, as required. O

(c) Ls : R? — R?, the counterclockwise rotation by 2%
Similarly to part (a), Ls is orientation preserving if det Ls > 0, and Lg is orientation reversing if
det Ly < 0. Next, since L3(1,0) = (cos(%E),sin(%F)) and L3(0,1) = (—sin(2E), cos(2X)), the

27 27
matrix representing L3 (under the standard basis of R?) is C9S( Z,) Sm(Q 7) . This matrix
sin(%)  cos(5)
has a determinant of:
2 2 2 2 2 2
cos(%r) cos(%r) — (—sin(%)) sin(%) = c082(77r) + sin2(77r) =1>0.
Thus, det Ly > 0, so L is orientation preserving, as required. O

(d) Ly : R? — R?, the clockwise rotation by 2%
Similarly to part (a), Ly is orientation preserving if det Ly > 0, and Ly is orientation reversing if
det Ly < 0. Next, since Ly(1,0) = (cos(2Z), —sin(2F)), and since Ly(0,1) = (sin(22), cos(Z2)),

cos(E)  sin(Z)

the matrix representing L4 (under the standard basis of R®) is _Sm(%ﬁ) 005(27) This
matrix has a determinant of:
2 2 2 2 2 2
cos(%)cos(%) - Sin(g)(—sin(g)) = cos?( ;r) + sin?( ;T) =1>0.
Thus, det Ly > 0, so Ly is orientation preserving, as required. O

(e) Ls : R? — R2?, the complex conjugation map z + Z, where R? is identified with C in
the standard way.
Similarly to part (a), Ls is orientation preserving if det Ls > 0, and L5 is orientation reversing



if det Ls < 0. Next, identifying R? with C, since L5(1,0) = L5(1 + 0i) = 1 + 0i = (1,0) and
L5(0,1) = L5(0+4) = 0 —i = (0,—1), the matrix representing Ls (under the standard basis

of R?) is (1) _01 This matrix has a determinant of (1)(—1) — (0)(0) = —1 < 0. Thus,
det Ly < 0, so Ls is orientation reversing, as required. ]

(f) L : R — R3, Lg(x,9,2) = (y, 2z, 7).

Similarly to part (a), Lg is orientation preserving if det Lg > 0, and Lg is orientation reversing if

det Lg < 0. Next, since Lg(1,0,0) = (0,0,1), Lg(0,1,0) = (1,0,0), and Lg(0,0,1) = (0, 1,0),
010

the matrix representing Lg (under the standard basis of R3) is | 0 0 1 |. This matrix has a
100

determinant of:

(0)(0)(0) = (0)(1)(0) = (1)(0)(0) + (1)(1)(1) + (0)(0)(0) — (0)(0)(1) = 1 > 0.

Thus, det Lg > 0, so Lg is orientation preserving, as required. O

(g) L7 : R" - R", Ly(v) = —v.

Similarly to part (a), L7 is orientation preserving if det Ly > 0, and L7 is orientation reversing if
det Ly < 0. Next, let (e1,...,e,) be the standard basis of R™. Then, L7 pushes this standard
basis to (Lrey, ..., Lre,) = (—e1,...,—ey), so the matrix representing L; (under the standard
basis of R™) is —1I,,, where I,, represents the identity matrix of size n. Then, since —1I,, is a
diagonal matrix with only (—1)'s on the main diagonal, its determinant is (—1)". We obtain
that det Ly = (—=1)" =1 > 0 if n is even, and det Ly = (—=1)" = —1 < 0 if n is odd. Thus,
L~ is orientation preserving if n is even, and L~ is orientation reversing if n is odd, as required. [

(h) Lg : R™ x R™ — R™ x R™, Lg(u,v) = (v, u).

Similarly to part (a), Lg is orientation preserving if det Lg > 0, and Lg is orientation reversing
if det Lg < 0. Next, let (e1,...,€m,) and (fi,..., fn) be the standard bases of R™ and R",
respectively. Then, the standard basis of R"*™ is ((e1,0),..., (em,0),(0, f1),..., (0, fn)), and
Lg pushes this basis to:

(Lg(e1,0),...,Ls(em,0), Lg(0, f1),..., Ls(0, fn)) = ((0,e1),...,(0,em), (f1,0),...,(fn,0)).

As a result, the matrix representing Lg (under the standard basis of R"*"™) is the block matrix

0 In . Next, if 0 € S;, denotes the permutation:
I, O

(c(1)=n+1,02)=n+2...,0(m)=n+m,c(m+1)=1,0(m+2)=2,...,0(n+m) =n),

then the above matrix only has nonzero entries at locations of the form (i,0(i)). Moreover, all
nonzero entries in the matrix are 1. Thus, its determinant is (—1)°.

Next, to compute (—1)7, we will show how to perform multiple transpositions in a row to construct
o. Beginning with the identity permutation:

(L,2,...,n,n+1,...,n+m),

we first need to transport n to position n + m because o(n + m) = n. To do this, we use m
transpositions, where each transposition shifts n one position to the right. This results in the



following permutation:
(L,2,....n—1,n+1,...,n+m,n).

Similarly, we apply the same procedure to transport n—1,...,1, in descending order. This results
in the permutation:
(n+1,...,n4+m,1,2,...,n),

which is the permutation o that we needed. Since we needed to transport n elements, and since
each transportation procedure required m transpositions, we obtain that o is a composition of
mn transpositions. As a result, det Lg = (—1)7 = (—1)™". Moreover, (—1)™" =1 > 0 if m or
n is even, and (—1)"™" = —1 < 0 otherwise. Thus, Lg is orientation preserving if m or n is even,
and Lg is orientation reversing otherwise, as required. O



3. We are given an n-dimensional vector space V' and an isomorphism x : A"(V) — R. We are also
given an integer 0 < k < n. Then, we will construct an isomorphism v : A"~ ¥(V) — (A*(V))*
that does not depend on any additional choices.

First, let us define a map ¢y, : A" F(V) — (A*(V))* by (¢ (N)(n) = x(AAR) forall A € Am#(V)
and all n € A¥(V). Note that v does not depend on any additional choices. (However, we will
have to choose bases later on in our proof.)

Next, for this definition to be valid, we must check that 1 (\) € (A¥(V))* for all A € A" *(V);
in other words, we must check that 1,(\) : A¥(V) — R is linear. Indeed, we will show that

(Vi (N) (crmr + eamz) = e1(e(N)(m) + c2(¥r(N))(12) for all 1,m2 € A¥(V) and all ¢1,co € R:

(Vr(N)(erm + eamz) = x(A A (c1m + cana))
= x(c1A AN+ oA Ama2) (Wedge product is bilinear)
=cix(AANL) 4+ cax(AAn2) (x is linear)
= c1(Pe(N)(m) + c2(¥r(A)) (02)-

Thus, ¥ () € (AF(V))* for all A € A"#(V/), as required.
Next, we will show that v is linear by showing that ¥ (c1 A1 + caXa) = c19k (A1) + catir(A2) for
all \i, Ao € A"7¥(V) and all ¢1,co € R. Indeed, for all n € A¥(V), we have:

(Vr(c1Ar + c2A2)) () = x((c1A1 + c2A2) A )
= x(c1 A1 A+ cada A D) (Wedge product is bilinear)
=c1x(AM1 An) + cax(A2 Am) (x is linear)
= c1(Pe(A1))(n) + c2(Yr(X2))(n)
= (a1 (A1) + c2¥(A2)) ()

Since (wk(clAl + CQ)\Q))(?]) = (Clwk(/\l) + ngk()\g))(n) for all n € Ak(V), we obtain that
Yrp(c1 A1 + c2X2) = 1k (A1) + cotr(A2). Therefore, 1y is linear, as required.

Next, we will show that 1)y, is injective. Since 1)y, is linear, it suffices to show that 15 () is nonzero
for all nonzero A € A" *(V).

Let A be any nonzero element of A»¥(V). Then, there exist vectors vy, ..., v,_x € V such that
Avi, ..., vp—k) # 0. Moreover, we claim that v, ...,v,_ must be linearly independent. If we
assume for contradiction that they are linearly dependent, then there exists 1 < i < n — k such
that v; is a linear combination of vy,...,v;_1, so we can write v; = ajv1 + - -+ + a;_1v;_1 for
some aq,...,a;_1 € R. Then, we would obtain:
)\(’Ul, ey Ugyen ,’Un_k)

= Av1,..., 101 + - F QG_1Vi1, ., V)

= A(V1, o VL, Upeg) T G AV, - Uiy e Un k) (Nis (n — k)-linear)

=a1-0+---4+a;_1-0 (X kills repetitions)

=0,
contradicting our condition that A\(v1,...,v,—) # 0. Thus, by contradiction, vi,..., v, are
linearly independent.
Next, we can extend (vy,...,v,_k) to a basis (vi,...,v,) of V. Then, let (¢1,...,¢n) be the

corresponding dual basis for A*(V), and let {wr}enr be the corresponding basis for AR(V). Let
us pick I = (n—k+1,...,n) € n¥, and let us also pick 1 := w; € A¥(V). Then, we can compute



(AAN)(v1,...,vy) as follows:

(AAN)(v1,...,0p)

= Z (=17 A(Va(1)s - - Vo(n—k)) MV (n—k+1)s - - - » Vo(n)) (Definition of wedge product)

oESy
o(l)<--<o(n—k)
o(n—k+1)<--<o(n)

= Z (=D AWs(1)s - -+ » Vo(n—i) )W (Vo (n—kt1)5 - -+ » Vor(n))-

O’GSn
o(l)<--<o(n—k)
o(n—k+1)<--<o(n)

Since o(n —k +1) < --- < o(n), we have (o(n — k + 1),...,0(n)) € n¥. As a result,

W (Vo(n—kt1)s -1 Vo)) = 1if (e(n —k +1),...,0(n)) = I = (n—k+1,...,n), and
WI(Vo(n—k41)s - - - s Vo(n)) = O otherwise. Thus, a term in the summation above is nonzero only
fon—k+1)=n—k+1l,on—k+2)=n—k+2,...,0(n) =n. Since we also require
o(1),...,0(n — k) to be in increasing order, the only permutation o that satisfies this is the
identity permutation, which we will denote id. Then, we obtain:

()\ A 77)(1)17 B ,’Un) = Z (_1)0)‘(170(1)7 E 7va(n—k))w](va(n—k:+1)a v 7U0(n))
0ESH
cr(l)<---e<a(nfk)
o(n—k+1)<--<o(n)

= (fl)id)\(vid(l), e Vid(n—k) )W (Vid(n—k+1)s - - - » Vid(n))
=1-Mvi,..o,Vp—k)Wr(Vp—k41s---,0n)
=1-Av1,...,Up—k) -1

= A1, Upk)

#0.

Since (AAn)(v1,...,v,) is nonzero, we obtain that A A7 is nonzero. Then, since x : A"(V) — R
is an isomorphism, x (A A7) is also nonzero. As a result, (¢x(\))(n7) = x(A A n) is also nonzero.
Finally, since we found 1 € A*(V) such that (1x()\))(n) is nonzero, we conclude that () is
nonzero. This is true for all nonzero A € A" *(V'), so vy is an injective linear map, as desired.

Next, the dimension of A"~%(V) is (,",). Additionally, the dimension of (A*(V))* equals the
dimension of A*(V), whichis (}) = (,,”,). Then, A""*(V') has the same dimension as (A*(V))*.
Therefore, since 1, : A"7¥(V) — (A¥(V))* is an injective linear map, it follows that vy, is an
isomorphism, as required. O



4. We are given an n-dimensional vector space V' with a basis (v;) and a dual basis (¢;). We are
also given an integer k with 0 < k < n. Finally, we are given an inner product on A¥(V') defined
by (wr,ws) = 77, and we define w, € A™(V) by wy, := @1 Ao A+ A @y,

(a) We will show that there is a unique isomorphism * : AF(V) — A"7¥(V) that satisfies
AN (x1) = (A, n)wy, for all X\, n € AR(V).

Step 0: We will introduce some useful notation.

First, for all I € nk, let I¢ be the ascending sequence in "% containing all integers in {1,...,n}
which do not appear in I. Also, let o7 € S,, be the permutation on {1,...,n} that maps 1,....,k
to the elements of I in ascending order and maps k+ 1,...,n to the elements of I¢ in ascending
order.

Step 1: We will show that if * exists, then it must be unique. To do this, we will compute the
value of xwr for every basic element w; of A*(V).

First, wy can be written in terms of basic elements of A" *(V) as Zjeng—k ajwy, where each

ay is a real coefficient. Then, for all I’ € n¥, we obtain:

(wp A (kwp)) (V1 ..y 0n)

= (wlz A Z CL]WJ)(Ul,...,Un)

—k
Jeng

= Z aj(wp ANwy)(vi,...,vp) (Wedge product is bilinear)

Jeni ™k

= Z Z aj(=1)7wr (Ve(1)s - - > Vo(k)) @I (Vo (kg 1)5 - -+ > Va(n)) (Definition of wedge product)

Jenl—k o€S,
Cha = (1)< <o(k)
o(k+1)<--<o(n)

Since I’ and (o (1),...,0(k)) are both elements of n¥, we obtain that W (Vg (1) -+ 5 Vo(ky) = 1
if I' = (o(1),...,0(k)), and wr(vy(1);---, Vo)) = O otherwise. Then, a term in the above
summation is nonzero only if o maps 1,...,k to the elements of I’ in ascending order. Next,
since (o(k+1),...,0(n)) must also be in increasing order, we obtain that o maps k+1,...,n
to elements of (I')¢ in increasing order, so o = o. Finally, since (o(k+1),...,0(n)) = (I')¢
and J are both in n?~*, we obtain Wi(Vo(kt1)s - Vo)) = 1 if J = (I')¢, and we obtain
W7 (Vo (kt1)s - - - » Vo(n)) = O otherwise. Overall, a term in the above summation is nonzero only if

J = (I')* and 0 = o/, so we obtain:

(CU[/ AN (*(,U[))(’Ul, e ,’Un) = a(p)c(—l)gl’wp (’L)I/)(,L)(]/)c(v(p)c)
= a([/)c(—].)all -1-1
= a([/)c(—l)af’. (1)

Next, we need wyr A (xwr) = (Wpr, wr)wy,, SO we obtain:

(wp A (xwp)) (V1. ooy 0n) = (W wr)wn (V1 ..y 0p)
= (wp,w1> -1

= (wp,w1>.

It follows from (1) that a(p)e(—1)7"" = (wyr, wr), 50 a(rye = (=1)°7 (wr,wr). Also, we are given
that (wp,wr) = 1if I’ =T and (wy,wr) = 0 otherwise. Then, aje = (—1)77 -1 = (—1)?7, and



acrye = (—=1)71 -0 = 0 for all I’ # I. Additionally, (I") takes the value of every sequence in
n"~* exactly once as I’ ranges across n; indeed, for all J € n»~*, we have (I’)¢ = J if and only
if I’ is the unique ascending sequence containing all integers in {1,...,n} excluded from J. As a
result, ay = 0 for all J # I¢. Therefore, xw; must equal ZJEngfk ajwy = ajewre = (—1)%Twre.
Since *wy is uniquely determined for all I € n*, and since {w;} ¢, is a basis for A¥(V), it follows
that * must be unique if it exists, as required. -

Step 2: We will show that * exists by constructing x*.

Let % : A¥(V) — A" *(V) be the linear map defined by *w; := (—1)7Zw;e for all basic elements
wr of AF(V). First, as shown above, I¢ takes the value of every sequence in n" % exactly once
as I ranges across n*. As a result, {wre}rent = {ws} jc,n-x is the standard basis for AR V),

o) {>f<u)1}16nz(i is also a basis for A"*(V). This shows that * is an isomorphism, as required.
(Formally, « is surjective because {*wy} c,+ spans A"E(V), then * is an isomorphism because
A*(V)) and A"7*(V) have the same dimension of (}) = (,",).)

Next, we must check that A A (1) = (\,n)w, for all \,n € A¥(V). Since both sides are bilinear
in terms of (\,7), it suffices to check this equality for all A,7 in the standard basis of A*(V/).
Then, let A = wp and 1 = wy, where I’ T € n¥. We have two cases: I' = I or I’ # I.

Case 1: I = I. Then, we have xwr = (—1)7 wre = (—1)71"w(p)e, S0 *wr has an w(p)e-coefficient
of (—1)?r". According to (1), it follows that:

(wp A (sw) (v, - .. ) = (=1)77 (=1)71 = 1.

Next, since wp A (xwr) € A"(V), and since {w,} is a basis of the 1-dimensional space A™(V),
we can write wyr A (*wy) = cw,, for some real constant c¢. Then, we obtain:

(wpr A (xwp)) (1, -y 0n) = cwpn (V1 ..., vp)
l1=c¢c-1
l1=c

Since ¢ = 1, it follows that wy A (*wy) = wy,. Moreover, since I’ = I, we have (wy,wr) = 1, so
(W, wr)wn = wy. Thus, wp A (xwy) = (W, wr)wy, if I' = I, as required.

Case 2: I' # I. Then, *wy = (—1)%Twye, where I¢ # (I')¢, so xw; has an w(jr).-coefficient of 0.
According to (1), it follows that:

(wp A (k1)) (V1 - . ., vn) = 0+ (=1)°7 = 0.

Next, since wp A (xwr) € A"(V), and since {w,} is a basis of the 1-dimensional space A™(V),
we can write wyr A (*wy) = cw,, for some real constant c¢. Then, we obtain:

(w[/ AN (*wl))(vl, .. .,Un) = cwn(vl, ... ,’Un)
0=c-1
0=c

Since ¢ = 0, it follows that wy A (xwy) = Ow,,. Moreover, since I’ # I, we have (wy,wy) =0, so
(W, wr)wn, = 0wy, Thus, wp A (xwr) = (wpr,wr)wy if I’ # I, as required.
Overall, we proved by cases that wy A (xwy) = (wp,wr)wy, for all I') T € n,
construction for the linear isomorphism x satisfies A A (xn) = (A, n)wy,.
Therefore, there is a unique isomorphism * : A*(V) — A"=F(V/) that satisfies AA (¥1) = (\, n)w,
for all A, € AF(V), as required. O

k

~. As a result, our



(b) First, given n = 3 and k = 1, we will compute *wy, *ws, and ws.

In part (a), when we proved that * is unique, we also proved the formula xw; = (—1)%7wye for all
I €nk. First, if I = (1) € 3}, then we have I¢ = (2,3). We get 07(1) = 1 since I = (1), and we
also get 07(2) = 2 and 07(3) = 3 since I¢ = (2,3). Then, o7 is the identity permutation, so we
obtain (—1)?7 = 1. Overall, if I = (1), then *w; = xw; = (—1)% wre = wag.

Next, if I = (2) € 3., then we have I° = (1,3). We get /(1) = 2 since I = (2), and we also get
01(2) =1 and 07(3) = 3 since I¢ = (1,3). Then, o7 is the permutation that transposes 1 and 2,
so (—1)97 = —1. Overall, if I = (2), then xwo = *w; = (—1)7 wre = —w13.

Next, if I = (3) € 3., then we have I¢ = (1,2). We get o7(1) = 3 since I = (3), and we also get
07(2) =1 and 07(3) = 2 since I¢ = (1,2). Then, oy is the permutation that transposes 1 and 2
to get the permutation (2,1, 3), followed by transposing 2 and 3 to get the permutation (3,1, 2).
As a result, (—1)°7 = (=1)? = 1. Overall, if I = (3), then *w3 = *w; = (—1)Twre = wia.

Our results for n = 3 and k = 1 are summarized in the table below:

Next, given n = 4 and k = 2, we will compute xwi2, *w13, *wi4, *was, *waq, and *xwsy.

First, if I = (1,2) € 42, then we have I° = (3,4). We get o/(1) = 1 and 0/(2) = 2 since
I =(1,2), and we also get 0;(3) = 3 and o;(4) = 4 since I¢ = (3,4). Then, oy is the identity
permutation, so (—1)77 = 1. Overall, if I = (1,2), then xwiy = *wr = (—1)Twre = waa.

Next, if I = (1,3) € 42, then we have I¢ = (2,4). We get o;(1) = 1 and o;(2) = 3 since
I = (1,3), and we also get 07(3) = 2 and o7(4) = 4 since I° = (2,4). Then, o7 is the
permutation that transposes 2 and 3, so (—1)?Z = —1. Overall, if I = (1,3), then we obtain
*W13 = *Wy = (—l)gfwlc = —W24.

Next, if I = (1,4) € 42, then we have I¢ = (2,3). We get o;(1) = 1 and o;(2) = 4 since
I = (1,4), and we also get 07(3) = 2 and o7(4) = 3 since I = (2,3). Then, o7 is the
permutation that transposes 2 and 3 to get the permutation (1, 3,2,4), followed by transposing 3
and 4 to get the permutation (1,4,2,3). As a result, (—1)°7 = (—=1)? = 1. Overall, if I = (1,4),
then sxwiy = *wr = (—1)77wre = was.

Next, if I = (2,3) € 42, then we have I¢ = (1,4). We get 0;(1) = 2 and 0/(2) = 3 since
I = (2,3), and we also get ¢;(3) = 1 and o7(4) = 4 since I¢ = (1,4). Then, oy is the
permutation that transposes 1 and 3 to get the permutation (3,2, 1,4), followed by transposing 2
and 3 to get the permutation (2,3,1,4). As a result, (—1)°7 = (—1)? = 1. Overall, if I = (2,3),
then sxwy3 = *w; = (—1)7Twre = wig4.

Next, if I = (2,4) € 42, then we have I¢ = (1,3). We get o7(1) = 2 and o;(2) = 4 since
I =(2,4),and we also get 07(3) = 1 and o7(4) = 3 since I¢ = (1, 3). Then, o7 is the permutation
that transposes 1 and 3 to get the permutation (3,2, 1,4), followed by transposing 2 and 3 to get
the permutation (2, 3, 1,4), followed by transposing 3 and 4 to get the permutation (2,4,1,3). As
a result, (—1)77 = (—1)3 = —1. Overall, if I = (2,4), then *woy = *w; = (—1)Twe = —wi3.
Next, if I = (3,4) € 42, then we have I¢ = (1,2). We get o;(1) = 3 and o;(2) = 4 since
I = (3,4), and we also get 07(3) = 1 and o7(4) = 2 since I = (1,2). Then, oy is the
permutation that transposes 1 and 3, followed by transposing 2 and 4, so (—1)77 = (1) = 1.
Overall, if I = (3,4), then xw34 = *w; = (—1) wye = wio.
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Our results for n = 4 and k = 2 are summarized in the table below:

wr *Wr
w12 w34
w13 —w24
W14 w23
w23 W14
W24 —w13
W34 w12

O]

(c) We will show that * o %, which is a composition A¥(V) — A" *(V) — A¥(V), is equal
to (—1)*("=k)id, where id denotes the identity map of A*(V).

First, since * o * and (—1)*(=%)id are both linear, it suffices to show that they agree on the
standard basis of A*(V). Then, it suffices to show that (x o *)w; = (—1)*"=Fy; for all I € nk.
First, we can evaluate (x o x)wy as follows:

(k0 *)wr = *

Next, we will examine the behaviour of the permutation 0;1 oope. Forall1 <i<n-—k, we
have that o7c maps i to (I);, the it element of I¢. Meanwhile, o; maps i + k to (I¢); because
k+1<i+k<mn, soo;" maps (I°); to i+ k. Overall, (67 00ye)(i) = o, ((I%);) =i+ k
if 1 <i<mn-—=k Next, foralln—k+1 < i <n, we have that o;c maps i to Ii,(n,k), the
(i—(n—k))t™ element of I. Meanwhile, o7 maps i—(n—k) to Ii_(n—k) because 1 <i—(n—k) <k,
so o ' maps Ii_(n—k) to i — (n — k). Overall, (o7t oare)(i) = a;l(li_(n_k)) =i—(n—k)if
n—k+1<i<n.

Now, to compute (—1)"1_10016, we will show how to perform multiple transpositions in a row to
obtain 01_1 o ore. Beginning with the identity permutation:

(1,2,... kk+1,...,n),

we first need to transport k to position n because (o7 ' o o7c)(n) = k. To do this, we use n — k
transpositions, where each transposition shifts k one position to the right. This results in the
following permutation:

(L,2,...,k—1k+1,...,nk).

Similarly, we apply the same procedure to transport k—1,...,1, in descending order. This results
in the permutation:
(k+1,...,n,1,2,... k),

which is the permutation al_l o ore that we needed. Since we needed to transport k elements,
where each transportation procedure required n — k transpositions, we obtain that 0;1 0 0gc is
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a composition of k(n — k) transpositions. As a result, (—1)”1_10"1“ = (- ) n=k) so we obtain
(x 0 %)wy = (—=1)71 °91ey; = (—1)k(=k)w; Therefore, since (x o x)w; = (—1)F R, for all
basic elements wy of A¥(V), we conclude that (x o ¥)w; = (—=1)*"=*)id, as reqwred O
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Notes on intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions.
(Note: This section was not submitted for grading.)

1. First, it was quite intuitive to identify A'(IR3) with R3 by identifying ©1, @2, and @3 with e, ea,
and eg, respectively, since this was the simplest choice possible. Next, we can "work backwards"
to choose how to identify A%2(R3) with R3. In other words, for all (a1, as,as), (b1, be,b3) € R3,
we first compare (algpl + agsps + CL3§03) VAN (bltpl ~+ bao + bggpg) with (al, as, ag) X (bl, bo, bg), and
this comparison tells us how to identify A%(R3) with R3.

2. The key idea was to treat the matrix representing each L; as a change of basis matrix as L; pushes
a basis of R™ to another basis of R™. This tells us that L; is orientation preserving if det L; > 0,
and L; is orientation reversing if det L; < 0. Afterward, we can finish by simply computing the
determinant of each linear map.

3. First, to define 15, we must define a linear map 9,(\) € (A*(V))* for all A\ € A" *(V), which
means that we must define (1(\))(1) € R for all A € A"~*(V) and all n € A*(V). We also wish
to use the given isomorphism x, which requires us to input an alternating n-tensor. Intuitively,
this n-tensor should be A A7 (or n A X), which leads to the definition (¢x(\))(n) := x(A A 7).
Next, we must prove that v satisfies the required properties. It is easy to check that v is
linear and that () is linear for all A € A" *(V), so the main challenge is to prove that 1,
is invertible. To do so, we use the standard linear algebra trick of proving that ¢ (\) # 0 for
all nonzero A. We need to find 1 such that (¢5(\))(n) = x(A A n) # 0, which is equivalent to
A A 1 being nonzero since x is an isomorphism. To construct 7, it would be convenient to have
a basis for V, so we pick one by picking v1,...,v,_k such that A(vi,...,v,—) # 0, proving
that vy,...,v,_ are linearly independent, then extending to a basis v1,...,v,. Intuitively, this
process helps us ensure that A has a nonzero w(; ., _)-coefficient. Then, we find a matching n
by picking 7 = W(n_k+1,..n). After computing that (A An)(v1,...,v,) # 0, we are done.

4. For part (a), our solution is motivated by the proof done in lecture for the unique existence of
the wedge product. First, to prove uniqueness of %, we use the given conditions to compute the
value of *wy for all I € n¥, thus showing that x maps every element of A¥(V) to exactly one
possible value. After computing the values of each *w;j, we can also use them to obtain an explicit
construction for *. Finally, we perform calculations using this construction to prove that there
exists * satisfying the required conditions.

Next, we solve part (b) using the formulas we obtained in part (a).

Next, for part (c), we begin computing *o* by computing that (xox)w; = (—1)71 °?7°w;. Then,

we must compute (—1)Uf10016. We see that ojc maps (1,...,n — k) to I¢, which 01_1 maps
to (k+1,...,n). Moreover, oc maps (n —k + 1,...,n) to I, which o; ' maps to (1,...,k).
Intuitively, al_loa]c breaks (1,...,n) into two chunks of size k and n—k, and then it swaps them.

Next, the key idea is that this swap can also be performed via trans;l)ositions by shifting elements
one-by-one. This requires k(n — k) transpositions, so we get (—1)71 °71¢qy; = (=1)k"=k),; and
we are done.
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