MAT257 Assignment 13 (Wedge Products)

(Author's name here)
February 11, 2022

1. We will find a good way of identifying $\Lambda^{1}\left(\mathbb{R}^{3}\right)$ and $\Lambda^{2}\left(\mathbb{R}^{3}\right)$ with \mathbb{R}^{3}.

First, let $\left(e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)\right)$ be the standard basis for \mathbb{R}^{3}, and let $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ be the corresponding dual basis for $\Lambda^{1}\left(\mathbb{R}^{3}\right)$. Then, since $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ is a basis for $\Lambda^{1}\left(\mathbb{R}^{3}\right)$, we can identify $\Lambda^{1}\left(\mathbb{R}^{3}\right)$ with \mathbb{R}^{3} by identifying $\varphi_{1}, \varphi_{2}, \varphi_{3}$ with e_{1}, e_{2}, e_{3}, respectively.
Next, the standard basis $\left(\omega_{I}\right)_{I \in \underline{3}_{a}^{2}}$ for $\Lambda^{2}\left(\mathbb{R}^{3}\right)$ contains the alternating tensors $\omega_{23}=\varphi_{2} \wedge \varphi_{3}$, $\omega_{13}=\varphi_{1} \wedge \varphi_{3}$, and $\omega_{12}=\varphi_{1} \wedge \varphi_{2}$. Then, $\left(\varphi_{2} \wedge \varphi_{3}, \varphi_{1} \wedge \varphi_{3}, \varphi_{1} \wedge \varphi_{2}\right)$ is a basis for $\Lambda^{2}\left(\mathbb{R}^{3}\right)$. Since $\varphi_{3} \wedge \varphi_{1}=-\varphi_{1} \wedge \varphi_{3}$, we obtain that $\left(\varphi_{2} \wedge \varphi_{3}, \varphi_{3} \wedge \varphi_{1}, \varphi_{1} \wedge \varphi_{2}\right)$ is another basis for $\Lambda^{2}\left(\mathbb{R}^{3}\right)$. As a result, we can identify $\Lambda^{2}\left(\mathbb{R}^{3}\right)$ with \mathbb{R}^{3} by identifying $\varphi_{2} \wedge \varphi_{3}, \varphi_{3} \wedge \varphi_{1}, \varphi_{1} \wedge \varphi_{2}$ with e_{1}, e_{2}, e_{3}, respectively.
Next, under these identifications, the wedge product $\Lambda: \Lambda^{1}\left(\mathbb{R}^{3}\right) \times \Lambda^{1}\left(\mathbb{R}^{3}\right) \rightarrow \Lambda^{2}\left(\mathbb{R}^{3}\right)$ becomes a map $P: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Then, we will check that P is the cross product on \mathbb{R}^{3}.
Let $\left(a_{1}, a_{2}, a_{3}\right),\left(b_{1}, b_{2}, b_{3}\right)$ be any two vectors in \mathbb{R}^{3}. Then, by definition, their cross product is:

$$
\left(a_{1}, a_{2}, a_{3}\right) \times\left(b_{1}, b_{2}, b_{3}\right)=\left(a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right) .
$$

Additionally, we can compute $P\left(\left(a_{1}, a_{2}, a_{3}\right),\left(b_{1}, b_{2}, b_{3}\right)\right)$ as follows:

$$
\begin{aligned}
& P\left(\left(a_{1}, a_{2}, a_{3}\right),\left(b_{1}, b_{2}, b_{3}\right)\right) \\
= & P\left(a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}, b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}\right) \\
= & \left(a_{1} \varphi_{1}+a_{2} \varphi_{2}+a_{3} \varphi_{3}\right) \wedge\left(b_{1} \varphi_{1}+b_{2} \varphi_{2}+b_{3} \varphi_{3}\right) \quad \text { (Applying identification) } \\
= & a_{1} b_{1} \varphi_{1} \wedge \varphi_{1}+a_{1} b_{2} \varphi_{1} \wedge \varphi_{2}+a_{1} b_{3} \varphi_{1} \wedge \varphi_{3}+a_{2} b_{1} \varphi_{2} \wedge \varphi_{1}+a_{2} b_{2} \varphi_{2} \wedge \varphi_{2}+a_{2} b_{3} \varphi_{2} \wedge \varphi_{3} \\
& +a_{3} b_{1} \varphi_{3} \wedge \varphi_{1}+a_{3} b_{2} \varphi_{3} \wedge \varphi_{2}+a_{3} b_{3} \varphi_{3} \wedge \varphi_{3} \quad \text { (Wedge product is bilinear) } \\
= & 0+a_{1} b_{2} \varphi_{1} \wedge \varphi_{2}-a_{1} b_{3} \varphi_{3} \wedge \varphi_{1}-a_{2} b_{1} \varphi_{1} \wedge \varphi_{2}+0+a_{2} b_{3} \varphi_{2} \wedge \varphi_{3} \\
& +a_{3} b_{1} \varphi_{3} \wedge \varphi_{1}-a_{3} b_{2} \varphi_{2} \wedge \varphi_{3}+0 \\
= & \left(a_{2} b_{3}-a_{3} b_{2}\right) \varphi_{2} \wedge \varphi_{3}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \varphi_{3} \wedge \varphi_{1}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \varphi_{1} \wedge \varphi_{2} \\
= & \left(a_{2} b_{3}-a_{3} b_{2}\right) e_{1}+\left(a_{3} b_{1}-a_{1} b_{3}\right) e_{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right) e_{3} \quad \text { (Applying identification) } \\
= & \left(a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right) \\
= & \left(a_{1}, a_{2}, a_{3}\right) \times\left(b_{1}, b_{2}, b_{3}\right) .
\end{aligned}
$$

Therefore, P is the cross product on \mathbb{R}^{3}, as required.
2. For each of the linear maps given below, we will determine whether it is orientation preserving or reversing, assuming the standard orientation for each \mathbb{R}^{n}.
(a) $L_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, L_{1}(x, y)=(-x, y)$.

First, consider the standard basis $\beta_{1}:=((1,0),(0,1))$ of \mathbb{R}^{2}. Then, L_{1} pushes this basis to the basis $\beta_{2}:=\left(L_{1}(1,0), L_{1}(0,1)\right)$ of \mathbb{R}^{2}. If we use the same orientation for both instances of \mathbb{R}^{2}, then L_{1} is orientation preserving if and only if β_{1} and β_{2} have the same orientation. Moreover, the change of basis matrix between β_{2} and β_{1} is the matrix representing L_{1} (under the standard basis of \mathbb{R}^{2}), so β_{1} and β_{2} have the same orientation if and only if $\operatorname{det} L_{1}>0$. Thus, L_{1} is orientation preserving if $\operatorname{det} L_{1}>0$, and L_{1} is orientation reversing if $\operatorname{det} L_{1}<0$.
Next, since $L_{1}(1,0)=(-1,0)$, and since $L_{1}(0,1)=(0,1)$, the matrix representing L_{1} (under the standard basis of \mathbb{R}^{2}) is $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$. This matrix has a determinant of $(-1)(1)-(0)(0)=-1<0$. Thus, $\operatorname{det} L_{1}<0$, so L_{1} is orientation reversing, as required.
(b) $L_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, L_{2}(x, y)=(y, x)$.

Similarly to part (a), L_{2} is orientation preserving if $\operatorname{det} L_{2}>0$, and L_{2} is orientation reversing if $\operatorname{det} L_{2}<0$. Next, since $L_{2}(1,0)=(0,1)$ and $L_{2}(0,1)=(1,0)$, the matrix representing L_{2} (under the standard basis of \mathbb{R}^{2}) is $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. This matrix has a determinant of $(0)(0)-(1)(1)=-1<0$. Thus, $\operatorname{det} L_{2}<0$, so L_{2} is orientation reversing, as required.
(c) $L_{3}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, the counterclockwise rotation by $\frac{2 \pi}{7}$.

Similarly to part (a), L_{3} is orientation preserving if $\operatorname{det} L_{3}>0$, and L_{3} is orientation reversing if $\operatorname{det} L_{3}<0$. Next, since $L_{3}(1,0)=\left(\cos \left(\frac{2 \pi}{7}\right), \sin \left(\frac{2 \pi}{7}\right)\right)$ and $L_{3}(0,1)=\left(-\sin \left(\frac{2 \pi}{7}\right), \cos \left(\frac{2 \pi}{7}\right)\right)$, the matrix representing L_{3} (under the standard basis of \mathbb{R}^{2}) is $\left(\begin{array}{cc}\cos \left(\frac{2 \pi}{7}\right) & -\sin \left(\frac{2 \pi}{7}\right) \\ \sin \left(\frac{2 \pi}{7}\right) & \cos \left(\frac{2 \pi}{7}\right)\end{array}\right)$. This matrix has a determinant of:

$$
\cos \left(\frac{2 \pi}{7}\right) \cos \left(\frac{2 \pi}{7}\right)-\left(-\sin \left(\frac{2 \pi}{7}\right)\right) \sin \left(\frac{2 \pi}{7}\right)=\cos ^{2}\left(\frac{2 \pi}{7}\right)+\sin ^{2}\left(\frac{2 \pi}{7}\right)=1>0 .
$$

Thus, $\operatorname{det} L_{3}>0$, so L_{3} is orientation preserving, as required.
(d) $L_{4}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, the clockwise rotation by $\frac{2 \pi}{7}$.

Similarly to part (a), L_{4} is orientation preserving if $\operatorname{det} L_{4}>0$, and L_{4} is orientation reversing if $\operatorname{det} L_{4}<0$. Next, since $L_{4}(1,0)=\left(\cos \left(\frac{2 \pi}{7}\right),-\sin \left(\frac{2 \pi}{7}\right)\right)$, and since $L_{4}(0,1)=\left(\sin \left(\frac{2 \pi}{7}\right), \cos \left(\frac{2 \pi}{7}\right)\right)$, the matrix representing L_{4} (under the standard basis of \mathbb{R}^{2}) is $\left(\begin{array}{cc}\cos \left(\frac{2 \pi}{7}\right) & \sin \left(\frac{2 \pi}{7}\right) \\ -\sin \left(\frac{2 \pi}{7}\right) & \cos \left(\frac{2 \pi}{7}\right)\end{array}\right)$. This matrix has a determinant of:

$$
\cos \left(\frac{2 \pi}{7}\right) \cos \left(\frac{2 \pi}{7}\right)-\sin \left(\frac{2 \pi}{7}\right)\left(-\sin \left(\frac{2 \pi}{7}\right)\right)=\cos ^{2}\left(\frac{2 \pi}{7}\right)+\sin ^{2}\left(\frac{2 \pi}{7}\right)=1>0
$$

Thus, $\operatorname{det} L_{4}>0$, so L_{4} is orientation preserving, as required.
(e) $L_{5}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, the complex conjugation map $z \mapsto \bar{z}$, where \mathbb{R}^{2} is identified with \mathbb{C} in the standard way.
Similarly to part (a), L_{5} is orientation preserving if $\operatorname{det} L_{5}>0$, and L_{5} is orientation reversing
if $\operatorname{det} L_{5}<0$. Next, identifying \mathbb{R}^{2} with \mathbb{C}, since $L_{5}(1,0)=L_{5}(1+0 i)=1+0 i=(1,0)$ and $L_{5}(0,1)=L_{5}(0+i)=0-i=(0,-1)$, the matrix representing L_{5} (under the standard basis of \mathbb{R}^{2}) is $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. This matrix has a determinant of $(1)(-1)-(0)(0)=-1<0$. Thus, $\operatorname{det} L_{5}<0$, so L_{5} is orientation reversing, as required.
(f) $L_{6}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, L_{6}(x, y, z)=(y, z, x)$.

Similarly to part (a), L_{6} is orientation preserving if $\operatorname{det} L_{6}>0$, and L_{6} is orientation reversing if $\operatorname{det} L_{6}<0$. Next, since $L_{6}(1,0,0)=(0,0,1), L_{6}(0,1,0)=(1,0,0)$, and $L_{6}(0,0,1)=(0,1,0)$, the matrix representing L_{6} (under the standard basis of \mathbb{R}^{3}) is $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$. This matrix has a determinant of:

$$
(0)(0)(0)-(0)(1)(0)-(1)(0)(0)+(1)(1)(1)+(0)(0)(0)-(0)(0)(1)=1>0 .
$$

Thus, $\operatorname{det} L_{6}>0$, so L_{6} is orientation preserving, as required.
(g) $L_{7}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, L_{7}(v)=-v$.

Similarly to part (a), L_{7} is orientation preserving if $\operatorname{det} L_{7}>0$, and L_{7} is orientation reversing if $\operatorname{det} L_{7}<0$. Next, let $\left(e_{1}, \ldots, e_{n}\right)$ be the standard basis of \mathbb{R}^{n}. Then, L_{7} pushes this standard basis to $\left(L_{7} e_{1}, \ldots, L_{7} e_{n}\right)=\left(-e_{1}, \ldots,-e_{n}\right)$, so the matrix representing L_{7} (under the standard basis of \mathbb{R}^{n}) is $-I_{n}$, where I_{n} represents the identity matrix of size n. Then, since $-I_{n}$ is a diagonal matrix with only $(-1)^{\prime}$'s on the main diagonal, its determinant is $(-1)^{n}$. We obtain that $\operatorname{det} L_{7}=(-1)^{n}=1>0$ if n is even, and $\operatorname{det} L_{7}=(-1)^{n}=-1<0$ if n is odd. Thus, L_{7} is orientation preserving if n is even, and L_{7} is orientation reversing if n is odd, as required.
(h) $L_{8}: \mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{m}, L_{8}(u, v)=(v, u)$.

Similarly to part (a), L_{8} is orientation preserving if $\operatorname{det} L_{8}>0$, and L_{8} is orientation reversing if $\operatorname{det} L_{8}<0$. Next, let $\left(e_{1}, \ldots, e_{m}\right)$ and $\left(f_{1}, \ldots, f_{n}\right)$ be the standard bases of \mathbb{R}^{m} and \mathbb{R}^{n}, respectively. Then, the standard basis of \mathbb{R}^{n+m} is $\left(\left(e_{1}, 0\right), \ldots,\left(e_{m}, 0\right),\left(0, f_{1}\right), \ldots,\left(0, f_{n}\right)\right)$, and L_{8} pushes this basis to:

$$
\left(L_{8}\left(e_{1}, 0\right), \ldots, L_{8}\left(e_{m}, 0\right), L_{8}\left(0, f_{1}\right), \ldots, L_{8}\left(0, f_{n}\right)\right)=\left(\left(0, e_{1}\right), \ldots,\left(0, e_{m}\right),\left(f_{1}, 0\right), \ldots,\left(f_{n}, 0\right)\right)
$$

As a result, the matrix representing L_{8} (under the standard basis of \mathbb{R}^{n+m}) is the block matrix $\left(\begin{array}{cc}0 & I_{n} \\ I_{m} & 0\end{array}\right)$. Next, if $\sigma \in S_{k}$ denotes the permutation:
$(\sigma(1)=n+1, \sigma(2)=n+2 \ldots, \sigma(m)=n+m, \sigma(m+1)=1, \sigma(m+2)=2, \ldots, \sigma(n+m)=n)$,
then the above matrix only has nonzero entries at locations of the form $(i, \sigma(i))$. Moreover, all nonzero entries in the matrix are 1 . Thus, its determinant is $(-1)^{\sigma}$.
Next, to compute $(-1)^{\sigma}$, we will show how to perform multiple transpositions in a row to construct σ. Beginning with the identity permutation:

$$
(1,2, \ldots, n, n+1, \ldots, n+m)
$$

we first need to transport n to position $n+m$ because $\sigma(n+m)=n$. To do this, we use m transpositions, where each transposition shifts n one position to the right. This results in the
following permutation:

$$
(1,2, \ldots, n-1, n+1, \ldots, n+m, n) .
$$

Similarly, we apply the same procedure to transport $n-1, \ldots, 1$, in descending order. This results in the permutation:

$$
(n+1, \ldots, n+m, 1,2, \ldots, n),
$$

which is the permutation σ that we needed. Since we needed to transport n elements, and since each transportation procedure required m transpositions, we obtain that σ is a composition of $m n$ transpositions. As a result, $\operatorname{det} L_{8}=(-1)^{\sigma}=(-1)^{m n}$. Moreover, $(-1)^{m n}=1>0$ if m or n is even, and $(-1)^{m n}=-1<0$ otherwise. Thus, L_{8} is orientation preserving if m or n is even, and L_{8} is orientation reversing otherwise, as required.
3. We are given an n-dimensional vector space V and an isomorphism $\chi: \Lambda^{n}(V) \rightarrow \mathbb{R}$. We are also given an integer $0 \leq k \leq n$. Then, we will construct an isomorphism $\psi_{k}: \Lambda^{n-k}(V) \rightarrow\left(\Lambda^{k}(V)\right)^{*}$ that does not depend on any additional choices.
First, let us define a map $\psi_{k}: \Lambda^{n-k}(V) \rightarrow\left(\Lambda^{k}(V)\right)^{*}$ by $\left(\psi_{k}(\lambda)\right)(\eta)=\chi(\lambda \wedge \eta)$ for all $\lambda \in \Lambda^{n-k}(V)$ and all $\eta \in \Lambda^{k}(V)$. Note that ψ_{k} does not depend on any additional choices. (However, we will have to choose bases later on in our proof.)
Next, for this definition to be valid, we must check that $\psi_{k}(\lambda) \in\left(\Lambda^{k}(V)\right)^{*}$ for all $\lambda \in \Lambda^{n-k}(V)$; in other words, we must check that $\psi_{k}(\lambda): \Lambda^{k}(V) \rightarrow \mathbb{R}$ is linear. Indeed, we will show that $\left(\psi_{k}(\lambda)\right)\left(c_{1} \eta_{1}+c_{2} \eta_{2}\right)=c_{1}\left(\psi_{k}(\lambda)\right)\left(\eta_{1}\right)+c_{2}\left(\psi_{k}(\lambda)\right)\left(\eta_{2}\right)$ for all $\eta_{1}, \eta_{2} \in \Lambda^{k}(V)$ and all $c_{1}, c_{2} \in \mathbb{R}$:

$$
\begin{aligned}
\left(\psi_{k}(\lambda)\right)\left(c_{1} \eta_{1}+c_{2} \eta_{2}\right) & =\chi\left(\lambda \wedge\left(c_{1} \eta_{1}+c_{2} \eta_{2}\right)\right) \\
& =\chi\left(c_{1} \lambda \wedge \eta_{1}+c_{2} \lambda \wedge \eta_{2}\right) \quad \text { (Wedge product is bilinear) } \\
& =c_{1} \chi\left(\lambda \wedge \eta_{1}\right)+c_{2} \chi\left(\lambda \wedge \eta_{2}\right) \quad(\chi \text { is linear) } \\
& =c_{1}\left(\psi_{k}(\lambda)\right)\left(\eta_{1}\right)+c_{2}\left(\psi_{k}(\lambda)\right)\left(\eta_{2}\right) .
\end{aligned}
$$

Thus, $\psi_{k}(\lambda) \in\left(\Lambda^{k}(V)\right)^{*}$ for all $\lambda \in \Lambda^{n-k}(V)$, as required.
Next, we will show that ψ_{k} is linear by showing that $\psi_{k}\left(c_{1} \lambda_{1}+c_{2} \lambda_{2}\right)=c_{1} \psi_{k}\left(\lambda_{1}\right)+c_{2} \psi_{k}\left(\lambda_{2}\right)$ for all $\lambda_{1}, \lambda_{2} \in \Lambda^{n-k}(V)$ and all $c_{1}, c_{2} \in \mathbb{R}$. Indeed, for all $\eta \in \Lambda^{k}(V)$, we have:

$$
\begin{aligned}
\left(\psi_{k}\left(c_{1} \lambda_{1}+c_{2} \lambda_{2}\right)\right)(\eta) & =\chi\left(\left(c_{1} \lambda_{1}+c_{2} \lambda_{2}\right) \wedge \eta\right) \\
& =\chi\left(c_{1} \lambda_{1} \wedge \eta+c_{2} \lambda_{2} \wedge \eta\right) \quad \text { (Wedge product is bilinear) } \\
& =c_{1} \chi\left(\lambda_{1} \wedge \eta\right)+c_{2} \chi\left(\lambda_{2} \wedge \eta\right) \quad(\chi \text { is linear) } \\
& =c_{1}\left(\psi_{k}\left(\lambda_{1}\right)\right)(\eta)+c_{2}\left(\psi_{k}\left(\lambda_{2}\right)\right)(\eta) \\
& =\left(c_{1} \psi_{k}\left(\lambda_{1}\right)+c_{2} \psi_{k}\left(\lambda_{2}\right)\right)(\eta)
\end{aligned}
$$

Since $\left(\psi_{k}\left(c_{1} \lambda_{1}+c_{2} \lambda_{2}\right)\right)(\eta)=\left(c_{1} \psi_{k}\left(\lambda_{1}\right)+c_{2} \psi_{k}\left(\lambda_{2}\right)\right)(\eta)$ for all $\eta \in \Lambda^{k}(V)$, we obtain that $\psi_{k}\left(c_{1} \lambda_{1}+c_{2} \lambda_{2}\right)=c_{1} \psi_{k}\left(\lambda_{1}\right)+c_{2} \psi_{k}\left(\lambda_{2}\right)$. Therefore, ψ_{k} is linear, as required.
Next, we will show that ψ_{k} is injective. Since ψ_{k} is linear, it suffices to show that $\psi_{k}(\lambda)$ is nonzero for all nonzero $\lambda \in \Lambda^{n-k}(V)$.
Let λ be any nonzero element of $\Lambda^{n-k}(V)$. Then, there exist vectors $v_{1}, \ldots, v_{n-k} \in V$ such that $\lambda\left(v_{1}, \ldots, v_{n-k}\right) \neq 0$. Moreover, we claim that v_{1}, \ldots, v_{n-k} must be linearly independent. If we assume for contradiction that they are linearly dependent, then there exists $1 \leq i \leq n-k$ such that v_{i} is a linear combination of v_{1}, \ldots, v_{i-1}, so we can write $v_{i}=a_{1} v_{1}+\cdots+a_{i-1} v_{i-1}$ for some $a_{1}, \ldots, a_{i-1} \in \mathbb{R}$. Then, we would obtain:

$$
\begin{aligned}
& \lambda\left(v_{1}, \ldots, v_{i}, \ldots, v_{n-k}\right) \\
= & \lambda\left(v_{1}, \ldots, a_{1} v_{1}+\cdots+a_{i-1} v_{i-1}, \ldots, v_{n-k}\right) \\
= & a_{1} \lambda\left(v_{1}, \ldots, v_{1}, \ldots, v_{n-k}\right)+\cdots+a_{i-1} \lambda\left(v_{1}, \ldots, v_{i-1}, \ldots, v_{n-k}\right) \quad(\lambda \text { is }(n-k) \text {-linear) } \\
= & a_{1} \cdot 0+\cdots+a_{i-1} \cdot 0 \quad \text { (} \lambda \text { kills repetitions) } \\
= & 0,
\end{aligned}
$$

contradicting our condition that $\lambda\left(v_{1}, \ldots, v_{n-k}\right) \neq 0$. Thus, by contradiction, v_{1}, \ldots, v_{n-k} are linearly independent.
Next, we can extend $\left(v_{1}, \ldots, v_{n-k}\right)$ to a basis $\left(v_{1}, \ldots, v_{n}\right)$ of V. Then, let $\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ be the corresponding dual basis for $\Lambda^{1}(V)$, and let $\left\{\omega_{I}\right\}_{I \in n_{a}^{k}}$ be the corresponding basis for $\Lambda^{k}(V)$. Let us pick $I=(n-k+1, \ldots, n) \in \underline{n}_{a}^{k}$, and let us also pick $\eta:=\omega_{I} \in \Lambda^{k}(V)$. Then, we can compute
$(\lambda \wedge \eta)\left(v_{1}, \ldots, v_{n}\right)$ as follows:

$$
\begin{aligned}
& (\lambda \wedge \eta)\left(v_{1}, \ldots, v_{n}\right) \\
= & \sum_{\substack{\sigma \in S_{n} \\
\sigma(1)<\cdots<\sigma(n-k) \\
\sigma(n-k+1)<\cdots<\sigma(n)}}(-1)^{\sigma} \lambda\left(v_{\sigma(1)}, \ldots, v_{\sigma(n-k)}\right) \eta\left(v_{\sigma(n-k+1)}, \ldots, v_{\sigma(n)}\right) \quad \text { (Definition of wedge product) } \\
= & \sum_{\substack{\sigma \in S_{n} \\
\sigma(1)<\cdots<\sigma(n-k) \\
\sigma(n-k+1)<\cdots<\sigma(n)}}(-1)^{\sigma} \lambda\left(v_{\sigma(1)}, \ldots, v_{\sigma(n-k)}\right) \omega_{I}\left(v_{\sigma(n-k+1)}, \ldots, v_{\sigma(n)}\right) .
\end{aligned}
$$

Since $\sigma(n-k+1)<\cdots<\sigma(n)$, we have $(\sigma(n-k+1), \ldots, \sigma(n)) \in \underline{n}_{a}^{k}$. As a result, $\omega_{I}\left(v_{\sigma(n-k+1)}, \ldots, v_{\sigma(n)}\right)=1$ if $(\sigma(n-k+1), \ldots, \sigma(n))=I=(n-k+1, \ldots, n)$, and $\omega_{I}\left(v_{\sigma(n-k+1)}, \ldots, v_{\sigma(n)}\right)=0$ otherwise. Thus, a term in the summation above is nonzero only if $\sigma(n-k+1)=n-k+1, \sigma(n-k+2)=n-k+2, \ldots, \sigma(n)=n$. Since we also require $\sigma(1), \ldots, \sigma(n-k)$ to be in increasing order, the only permutation σ that satisfies this is the identity permutation, which we will denote id. Then, we obtain:

$$
\begin{aligned}
(\lambda \wedge \eta)\left(v_{1}, \ldots, v_{n}\right) & =\sum_{\substack{\sigma \in S_{n} \\
\begin{array}{c}
\sigma(1)<\cdots<\sigma(n-k) \\
\sigma(n-k+1)<\cdots<\sigma(n)
\end{array}}}(-1)^{\sigma} \lambda\left(v_{\sigma(1)}, \ldots, v_{\sigma(n-k)}\right) \omega_{I}\left(v_{\sigma(n-k+1)}, \ldots, v_{\sigma(n)}\right) \\
& =(-1)^{\operatorname{id}} \lambda\left(v_{\mathrm{id}(1)}, \ldots, v_{\mathrm{id}(n-k)}\right) \omega_{I}\left(v_{\mathrm{id}(n-k+1)}, \ldots, v_{\mathrm{id}(n)}\right) \\
& =1 \cdot \lambda\left(v_{1}, \ldots, v_{n-k}\right) \omega_{I}\left(v_{n-k+1}, \ldots, v_{n}\right) \\
& =1 \cdot \lambda\left(v_{1}, \ldots, v_{n-k}\right) \cdot 1 \\
& =\lambda\left(v_{1}, \ldots, v_{n-k}\right) \\
& \neq 0 .
\end{aligned}
$$

Since $(\lambda \wedge \eta)\left(v_{1}, \ldots, v_{n}\right)$ is nonzero, we obtain that $\lambda \wedge \eta$ is nonzero. Then, since $\chi: \Lambda^{n}(V) \rightarrow \mathbb{R}$ is an isomorphism, $\chi(\lambda \wedge \eta)$ is also nonzero. As a result, $\left(\psi_{k}(\lambda)\right)(\eta)=\chi(\lambda \wedge \eta)$ is also nonzero. Finally, since we found $\eta \in \Lambda^{k}(V)$ such that $\left(\psi_{k}(\lambda)\right)(\eta)$ is nonzero, we conclude that $\psi_{k}(\lambda)$ is nonzero. This is true for all nonzero $\lambda \in \Lambda^{n-k}(V)$, so ψ_{k} is an injective linear map, as desired. Next, the dimension of $\Lambda^{n-k}(V)$ is $\binom{n}{n-k}$. Additionally, the dimension of $\left(\Lambda^{k}(V)\right)^{*}$ equals the dimension of $\Lambda^{k}(V)$, which is $\binom{n}{k}=\binom{n}{n-k}$. Then, $\Lambda^{n-k}(V)$ has the same dimension as $\left(\Lambda^{k}(V)\right)^{*}$. Therefore, since $\psi_{k}: \Lambda^{n-k}(V) \rightarrow\left(\Lambda^{k}(V)\right)^{*}$ is an injective linear map, it follows that ψ_{k} is an isomorphism, as required.
4. We are given an n-dimensional vector space V with a basis $\left(v_{i}\right)$ and a dual basis $\left(\varphi_{j}\right)$. We are also given an integer k with $0 \leq k \leq n$. Finally, we are given an inner product on $\Lambda^{k}(V)$ defined by $\left\langle\omega_{I}, \omega_{J}\right\rangle=\delta_{I J}$, and we define $\omega_{n} \in \Lambda^{n}(V)$ by $\omega_{n}:=\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{n}$.
(a) We will show that there is a unique isomorphism $*: \Lambda^{k}(V) \rightarrow \Lambda^{n-k}(V)$ that satisfies $\lambda \wedge(* \eta)=\langle\lambda, \eta\rangle \omega_{n}$ for all $\lambda, \eta \in \Lambda^{k}(V)$.
Step 0: We will introduce some useful notation.
First, for all $I \in \underline{n}_{a}^{k}$, let I^{c} be the ascending sequence in \underline{n}_{a}^{n-k} containing all integers in $\{1, \ldots, n\}$ which do not appear in I. Also, let $\sigma_{I} \in S_{n}$ be the permutation on $\{1, \ldots, n\}$ that maps $1, \ldots, k$ to the elements of I in ascending order and maps $k+1, \ldots, n$ to the elements of I^{c} in ascending order.
Step 1: We will show that if $*$ exists, then it must be unique. To do this, we will compute the value of $* \omega_{I}$ for every basic element ω_{I} of $\Lambda^{k}(V)$.
First, $* \omega_{I}$ can be written in terms of basic elements of $\Lambda^{n-k}(V)$ as $\sum_{J \in n_{a}^{n-k}} a_{J} \omega_{J}$, where each a_{J} is a real coefficient. Then, for all $I^{\prime} \in \underline{n}_{a}^{k}$, we obtain:

$$
\begin{aligned}
& \left(\omega_{I^{\prime}} \wedge\left(* \omega_{I}\right)\right)\left(v_{1}, \ldots, v_{n}\right) \\
= & \left(\omega_{I^{\prime}} \wedge \sum_{J \in \underline{n}_{a}^{n-k}} a_{J} \omega_{J}\right)\left(v_{1}, \ldots, v_{n}\right) \\
= & \sum_{J \in \underline{n}_{a}^{n-k}} a_{J}\left(\omega_{I^{\prime}} \wedge \omega_{J}\right)\left(v_{1}, \ldots, v_{n}\right) \quad \text { (Wedge product is bilinear) } \\
= & \sum_{J \in \underline{n}_{a}^{n-k}} \sum_{\substack{\sigma \in S_{n} \\
\sigma(1)<\cdots<\sigma(k) \\
\sigma(k+1)<\cdots<\sigma(n)}} a_{J}(-1)^{\sigma} \omega_{I^{\prime}}\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \omega_{J}\left(v_{\sigma(k+1)}, \ldots, v_{\sigma(n)}\right) \quad \text { (Definition of wedge product) }
\end{aligned}
$$

Since I^{\prime} and $(\sigma(1), \ldots, \sigma(k))$ are both elements of \underline{n}_{a}^{k}, we obtain that $\omega_{I^{\prime}}\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)=1$ if $I^{\prime}=(\sigma(1), \ldots, \sigma(k))$, and $\omega_{I^{\prime}}\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)=0$ otherwise. Then, a term in the above summation is nonzero only if σ maps $1, \ldots, k$ to the elements of I^{\prime} in ascending order. Next, since $(\sigma(k+1), \ldots, \sigma(n))$ must also be in increasing order, we obtain that σ maps $k+1, \ldots, n$ to elements of $\left(I^{\prime}\right)^{c}$ in increasing order, so $\sigma=\sigma_{I^{\prime}}$. Finally, since $(\sigma(k+1), \ldots, \sigma(n))=\left(I^{\prime}\right)^{c}$ and J are both in \underline{n}_{a}^{n-k}, we obtain $\omega_{J}\left(v_{\sigma(k+1)}, \ldots, v_{\sigma(n)}\right)=1$ if $J=\left(I^{\prime}\right)^{c}$, and we obtain $\omega_{J}\left(v_{\sigma(k+1)}, \ldots, v_{\sigma(n)}\right)=0$ otherwise. Overall, a term in the above summation is nonzero only if $J=\left(I^{\prime}\right)^{c}$ and $\sigma=\sigma_{I^{\prime}}$, so we obtain:

$$
\begin{align*}
\left(\omega_{I^{\prime}} \wedge\left(* \omega_{I}\right)\right)\left(v_{1}, \ldots, v_{n}\right) & =a_{\left(I^{\prime}\right)^{c}}(-1)^{\sigma_{I^{\prime}}} \omega_{I^{\prime}}\left(v_{I^{\prime}}\right) \omega_{\left(I^{\prime}\right) c}\left(v_{\left(I^{\prime}\right)}\right) \\
& =a_{\left(I^{\prime}\right)^{c}}(-1)^{\sigma_{I^{\prime}}} \cdot 1 \cdot 1 \\
& =a_{\left(I^{\prime}\right)^{c}}(-1)^{\sigma_{I^{\prime}}} . \tag{1}
\end{align*}
$$

Next, we need $\omega_{I^{\prime}} \wedge\left(* \omega_{I}\right)=\left\langle\omega_{I^{\prime}}, \omega_{I}\right\rangle \omega_{n}$, so we obtain:

$$
\begin{aligned}
\left(\omega_{I^{\prime}} \wedge\left(* \omega_{I}\right)\right)\left(v_{1}, \ldots, v_{n}\right) & =\left\langle\omega_{I^{\prime}}, \omega_{I}\right\rangle \omega_{n}\left(v_{1}, \ldots, v_{n}\right) \\
& =\left\langle\omega_{I^{\prime}}, \omega_{I}\right\rangle \cdot 1 \\
& =\left\langle\omega_{I^{\prime}}, \omega_{I}\right\rangle .
\end{aligned}
$$

It follows from (1) that $a_{\left(I^{\prime}\right)^{c}}(-1)^{\sigma_{I^{\prime}}}=\left\langle\omega_{I^{\prime}}, \omega_{I}\right\rangle$, so $a_{\left(I^{\prime}\right)^{c}}=(-1)^{\sigma_{I^{\prime}}}\left\langle\omega_{I^{\prime}}, \omega_{I}\right\rangle$. Also, we are given that $\left\langle\omega_{I^{\prime}}, \omega_{I}\right\rangle=1$ if $I^{\prime}=I$ and $\left\langle\omega_{I^{\prime}}, \omega_{I}\right\rangle=0$ otherwise. Then, $a_{I^{c}}=(-1)^{\sigma_{I}} \cdot 1=(-1)^{\sigma_{I}}$, and
$a_{\left(I^{\prime}\right)^{c}}=(-1)^{\sigma} I^{\prime} \cdot 0=0$ for all $I^{\prime} \neq I$. Additionally, $\left(I^{\prime}\right)^{c}$ takes the value of every sequence in \underline{n}_{a}^{n-k} exactly once as I^{\prime} ranges across \underline{n}_{a}^{k}; indeed, for all $J \in \underline{n}_{a}^{n-k}$, we have $\left(I^{\prime}\right)^{c}=J$ if and only if I^{\prime} is the unique ascending sequence containing all integers in $\{1, \ldots, n\}$ excluded from J. As a result, $a_{J}=0$ for all $J \neq I^{c}$. Therefore, $* \omega_{I}$ must equal $\sum_{J \in \underline{n}_{a}^{n-k}} a_{J} \omega_{J}=a_{I^{c}} \omega_{I^{c}}=(-1)^{\sigma} \omega_{I^{c}}$. Since $* \omega_{I}$ is uniquely determined for all $I \in \underline{n}_{a}^{k}$, and since $\left\{\omega_{I}\right\}_{I \in \underline{n}_{a}^{k}}$ is a basis for $\Lambda^{k}(V)$, it follows that $*$ must be unique if it exists, as required.
Step 2: We will show that $*$ exists by constructing $*$.
Let $*: \Lambda^{k}(V) \rightarrow \Lambda^{n-k}(V)$ be the linear map defined by $* \omega_{I}:=(-1)^{\sigma_{I}} \omega_{I^{c}}$ for all basic elements ω_{I} of $\Lambda^{k}(V)$. First, as shown above, I^{c} takes the value of every sequence in \underline{n}_{a}^{n-k} exactly once as I ranges across \underline{n}_{a}^{k}. As a result, $\left\{\omega_{I^{c}}\right\}_{I \in \underline{n}_{a}^{k}}=\left\{\omega_{J}\right\}_{J \in \underline{n}_{a}^{n-k}}$ is the standard basis for $\Lambda^{n-k}(V)$, so $\left\{* \omega_{I}\right\}_{I \in \underline{n}_{a}^{k}}$ is also a basis for $\Lambda^{n-k}(V)$. This shows that $*$ is an isomorphism, as required. (Formally, $*$ is surjective because $\left\{* \omega_{I}\right\}_{I \in \underline{n}_{a}^{k}}$ spans $\Lambda^{n-k}(V)$, then $*$ is an isomorphism because $\Lambda^{k}(V)$ and $\Lambda^{n-k}(V)$ have the same dimension of $\binom{n}{k}=\binom{n}{n-k}$.)
Next, we must check that $\lambda \wedge(* \eta)=\langle\lambda, \eta\rangle \omega_{n}$ for all $\lambda, \eta \in \Lambda^{k}(V)$. Since both sides are bilinear in terms of (λ, η), it suffices to check this equality for all λ, η in the standard basis of $\Lambda^{k}(V)$. Then, let $\lambda=\omega_{I^{\prime}}$ and $\eta=\omega_{I}$, where $I^{\prime}, I \in \underline{n}_{a}^{k}$. We have two cases: $I^{\prime}=I$ or $I^{\prime} \neq I$.
Case 1: $I^{\prime}=I$. Then, we have $* \omega_{I}=(-1)^{\sigma_{I}} \omega_{I^{c}}=(-1)^{\sigma} I^{\prime} \omega_{\left(I^{\prime}\right)^{c}}$, so $* \omega_{I}$ has an $\omega_{\left(I^{\prime}\right)^{c} \text {-coefficient }}$ of $(-1)^{\sigma_{I^{\prime}}}$. According to (1), it follows that:

$$
\left(\omega_{I^{\prime}} \wedge\left(* \omega_{I}\right)\right)\left(v_{1}, \ldots, v_{n}\right)=(-1)^{\sigma_{I^{\prime}}}(-1)^{\sigma_{I^{\prime}}}=1
$$

Next, since $\omega_{I^{\prime}} \wedge\left(* \omega_{I}\right) \in \Lambda^{n}(V)$, and since $\left\{\omega_{n}\right\}$ is a basis of the 1-dimensional space $\Lambda^{n}(V)$, we can write $\omega_{I^{\prime}} \wedge\left(* \omega_{I}\right)=c \omega_{n}$ for some real constant c. Then, we obtain:

$$
\begin{aligned}
\left(\omega_{I^{\prime}} \wedge\left(* \omega_{I}\right)\right)\left(v_{1}, \ldots, v_{n}\right) & =c \omega_{n}\left(v_{1}, \ldots, v_{n}\right) \\
1 & =c \cdot 1 \\
1 & =c .
\end{aligned}
$$

Since $c=1$, it follows that $\omega_{I^{\prime}} \wedge\left(* \omega_{I}\right)=\omega_{n}$. Moreover, since $I^{\prime}=I$, we have $\left\langle\omega_{I^{\prime}}, \omega_{I}\right\rangle=1$, so $\left\langle\omega_{I^{\prime}}, \omega_{I}\right\rangle \omega_{n}=\omega_{n}$. Thus, $\omega_{I^{\prime}} \wedge\left(* \omega_{I}\right)=\left\langle\omega_{I^{\prime}}, \omega_{I}\right\rangle \omega_{n}$ if $I^{\prime}=I$, as required.
 According to (1), it follows that:

$$
\left(\omega_{I^{\prime}} \wedge\left(* \omega_{I}\right)\right)\left(v_{1}, \ldots, v_{n}\right)=0 \cdot(-1)^{\sigma_{I^{\prime}}}=0
$$

Next, since $\omega_{I^{\prime}} \wedge\left(* \omega_{I}\right) \in \Lambda^{n}(V)$, and since $\left\{\omega_{n}\right\}$ is a basis of the 1-dimensional space $\Lambda^{n}(V)$, we can write $\omega_{I^{\prime}} \wedge\left(* \omega_{I}\right)=c \omega_{n}$ for some real constant c. Then, we obtain:

$$
\begin{aligned}
\left(\omega_{I^{\prime}} \wedge\left(* \omega_{I}\right)\right)\left(v_{1}, \ldots, v_{n}\right) & =c \omega_{n}\left(v_{1}, \ldots, v_{n}\right) \\
0 & =c \cdot 1 \\
0 & =c .
\end{aligned}
$$

Since $c=0$, it follows that $\omega_{I^{\prime}} \wedge\left(* \omega_{I}\right)=0 \omega_{n}$. Moreover, since $I^{\prime} \neq I$, we have $\left\langle\omega_{I^{\prime}}, \omega_{I}\right\rangle=0$, so $\left\langle\omega_{I^{\prime}}, \omega_{I}\right\rangle \omega_{n}=0 \omega_{n}$. Thus, $\omega_{I^{\prime}} \wedge\left(* \omega_{I}\right)=\left\langle\omega_{I^{\prime}}, \omega_{I}\right\rangle \omega_{n}$ if $I^{\prime} \neq I$, as required.
Overall, we proved by cases that $\omega_{I^{\prime}} \wedge\left(* \omega_{I}\right)=\left\langle\omega_{I^{\prime}}, \omega_{I}\right\rangle \omega_{n}$ for all $I^{\prime}, I \in \underline{n}_{a}^{k}$. As a result, our construction for the linear isomorphism $*$ satisfies $\lambda \wedge(* \eta)=\langle\lambda, \eta\rangle \omega_{n}$.
Therefore, there is a unique isomorphism $*: \Lambda^{k}(V) \rightarrow \Lambda^{n-k}(V)$ that satisfies $\lambda \wedge(* \eta)=\langle\lambda, \eta\rangle \omega_{n}$ for all $\lambda, \eta \in \Lambda^{k}(V)$, as required.
(b) First, given $n=3$ and $k=1$, we will compute $* \omega_{1}, * \omega_{2}$, and ω_{3}.

In part (a), when we proved that $*$ is unique, we also proved the formula $* \omega_{I}=(-1)^{\sigma_{I}} \omega_{I^{c}}$ for all $I \in \underline{n}_{a}^{k}$. First, if $I=(1) \in \underline{3}_{a}^{1}$, then we have $I^{c}=(2,3)$. We get $\sigma_{I}(1)=1$ since $I=(1)$, and we also get $\sigma_{I}(2)=2$ and $\sigma_{I}(3)=3$ since $I^{c}=(2,3)$. Then, σ_{I} is the identity permutation, so we obtain $(-1)^{\sigma_{I}}=1$. Overall, if $I=(1)$, then $* \omega_{1}=* \omega_{I}=(-1)^{\sigma_{I}} \omega_{I^{c}}=\omega_{23}$.
Next, if $I=(2) \in \underline{3}_{a}^{1}$, then we have $I^{c}=(1,3)$. We get $\sigma_{I}(1)=2$ since $I=(2)$, and we also get $\sigma_{I}(2)=1$ and $\sigma_{I}(3)=3$ since $I^{c}=(1,3)$. Then, σ_{I} is the permutation that transposes 1 and 2 , so $(-1)^{\sigma_{I}}=-1$. Overall, if $I=(2)$, then $* \omega_{2}=* \omega_{I}=(-1)^{\sigma_{I}} \omega_{I^{c}}=-\omega_{13}$.
Next, if $I=(3) \in \underline{3}_{a}^{1}$, then we have $I^{c}=(1,2)$. We get $\sigma_{I}(1)=3$ since $I=(3)$, and we also get $\sigma_{I}(2)=1$ and $\sigma_{I}(3)=2$ since $I^{c}=(1,2)$. Then, σ_{I} is the permutation that transposes 1 and 2 to get the permutation $(2,1,3)$, followed by transposing 2 and 3 to get the permutation $(3,1,2)$. As a result, $(-1)^{\sigma_{I}}=(-1)^{2}=1$. Overall, if $I=(3)$, then $* \omega_{3}=* \omega_{I}=(-1)^{\sigma_{I}} \omega_{I^{c}}=\omega_{12}$.
Our results for $n=3$ and $k=1$ are summarized in the table below:

ω_{I}	$* \omega_{I}$
ω_{1}	ω_{23}
ω_{2}	$-\omega_{13}$
ω_{3}	ω_{12}

Next, given $n=4$ and $k=2$, we will compute $* \omega_{12}, * \omega_{13}, * \omega_{14}, * \omega_{23}, * \omega_{24}$, and $* \omega_{34}$.
First, if $I=(1,2) \in \underline{4}_{a}^{2}$, then we have $I^{c}=(3,4)$. We get $\sigma_{I}(1)=1$ and $\sigma_{I}(2)=2$ since $I=(1,2)$, and we also get $\sigma_{I}(3)=3$ and $\sigma_{I}(4)=4$ since $I^{c}=(3,4)$. Then, σ_{I} is the identity permutation, so $(-1)^{\sigma_{I}}=1$. Overall, if $I=(1,2)$, then $* \omega_{12}=* \omega_{I}=(-1)^{\sigma_{I}} \omega_{I^{c}}=\omega_{34}$.
Next, if $I=(1,3) \in \underline{4}_{a}^{2}$, then we have $I^{c}=(2,4)$. We get $\sigma_{I}(1)=1$ and $\sigma_{I}(2)=3$ since $I=(1,3)$, and we also get $\sigma_{I}(3)=2$ and $\sigma_{I}(4)=4$ since $I^{c}=(2,4)$. Then, σ_{I} is the permutation that transposes 2 and 3 , so $(-1)^{\sigma_{I}}=-1$. Overall, if $I=(1,3)$, then we obtain $* \omega_{13}=* \omega_{I}=(-1)^{\sigma_{I}} \omega_{I^{c}}=-\omega_{24}$.
Next, if $I=(1,4) \in \underline{4}_{a}^{2}$, then we have $I^{c}=(2,3)$. We get $\sigma_{I}(1)=1$ and $\sigma_{I}(2)=4$ since $I=(1,4)$, and we also get $\sigma_{I}(3)=2$ and $\sigma_{I}(4)=3$ since $I^{c}=(2,3)$. Then, σ_{I} is the permutation that transposes 2 and 3 to get the permutation $(1,3,2,4)$, followed by transposing 3 and 4 to get the permutation $(1,4,2,3)$. As a result, $(-1)^{\sigma_{I}}=(-1)^{2}=1$. Overall, if $I=(1,4)$, then $* \omega_{14}=* \omega_{I}=(-1)^{\sigma_{I}} \omega_{I^{c}}=\omega_{23}$.
Next, if $I=(2,3) \in \underline{4}_{a}^{2}$, then we have $I^{c}=(1,4)$. We get $\sigma_{I}(1)=2$ and $\sigma_{I}(2)=3$ since $I=(2,3)$, and we also get $\sigma_{I}(3)=1$ and $\sigma_{I}(4)=4$ since $I^{c}=(1,4)$. Then, σ_{I} is the permutation that transposes 1 and 3 to get the permutation $(3,2,1,4)$, followed by transposing 2 and 3 to get the permutation $(2,3,1,4)$. As a result, $(-1)^{\sigma_{I}}=(-1)^{2}=1$. Overall, if $I=(2,3)$, then $* \omega_{23}=* \omega_{I}=(-1)^{\sigma_{I}} \omega_{I^{c}}=\omega_{14}$.
Next, if $I=(2,4) \in \underline{4}_{a}^{2}$, then we have $I^{c}=(1,3)$. We get $\sigma_{I}(1)=2$ and $\sigma_{I}(2)=4$ since $I=(2,4)$, and we also get $\sigma_{I}(3)=1$ and $\sigma_{I}(4)=3$ since $I^{c}=(1,3)$. Then, σ_{I} is the permutation that transposes 1 and 3 to get the permutation $(3,2,1,4)$, followed by transposing 2 and 3 to get the permutation $(2,3,1,4)$, followed by transposing 3 and 4 to get the permutation $(2,4,1,3)$. As a result, $(-1)^{\sigma_{I}}=(-1)^{3}=-1$. Overall, if $I=(2,4)$, then $* \omega_{24}=* \omega_{I}=(-1)^{\sigma_{I}} \omega_{I^{c}}=-\omega_{13}$.
Next, if $I=(3,4) \in \underline{4}_{a}^{2}$, then we have $I^{c}=(1,2)$. We get $\sigma_{I}(1)=3$ and $\sigma_{I}(2)=4$ since $I=(3,4)$, and we also get $\sigma_{I}(3)=1$ and $\sigma_{I}(4)=2$ since $I^{c}=(1,2)$. Then, σ_{I} is the permutation that transposes 1 and 3 , followed by transposing 2 and 4 , so $(-1)^{\sigma_{I}}=(-1)^{2}=1$. Overall, if $I=(3,4)$, then $* \omega_{34}=* \omega_{I}=(-1)^{\sigma_{I}} \omega_{I^{c}}=\omega_{12}$.

Our results for $n=4$ and $k=2$ are summarized in the table below:

ω_{I}	$* \omega_{I}$
ω_{12}	ω_{34}
ω_{13}	$-\omega_{24}$
ω_{14}	ω_{23}
ω_{23}	ω_{14}
ω_{24}	$-\omega_{13}$
ω_{34}	ω_{12}

(c) We will show that $* \circ *$, which is a composition $\Lambda^{k}(V) \rightarrow \Lambda^{n-k}(V) \rightarrow \Lambda^{k}(V)$, is equal to $(-1)^{k(n-k)}$ id, where id denotes the identity map of $\Lambda^{k}(V)$.
First, since $* 0 *$ and $(-1)^{k(n-k)}$ id are both linear, it suffices to show that they agree on the standard basis of $\Lambda^{k}(V)$. Then, it suffices to show that $(* \circ *) \omega_{I}=(-1)^{k(n-k)} \omega_{I}$ for all $I \in \underline{n}_{a}^{k}$. First, we can evaluate $(* \circ *) \omega_{I}$ as follows:

$$
\begin{aligned}
(* \circ *) \omega_{I} & =*\left(* \omega_{I}\right) \\
& =*\left((-1)^{\sigma_{I}} \omega_{I^{c}}\right) \\
& =(-1)^{\sigma_{I}}\left(* \omega_{I^{c}}\right) \\
& =(-1)^{\sigma_{I}}\left((-1)^{\sigma_{I^{c}}} \omega_{\left.\left(I^{c}\right)^{c}\right)}\right) \\
& =(-1)^{\sigma_{I}}(-1)^{\sigma_{I^{c}}} \omega_{I} \\
& =(-1)^{\sigma_{I}^{-1}}(-1)^{\sigma_{I^{c}}} \omega_{I} \\
& =(-1)^{\sigma_{I}^{-1} \circ \sigma_{I^{c}}} \omega_{I}
\end{aligned}
$$

Next, we will examine the behaviour of the permutation $\sigma_{I}^{-1} \circ \sigma_{I^{c}}$. For all $1 \leq i \leq n-k$, we have that $\sigma_{I^{c}}$ maps i to $\left(I^{c}\right)_{i}$, the $i^{\text {th }}$ element of I^{c}. Meanwhile, σ_{I} maps $i+k$ to $\left(I^{c}\right)_{i}$ because $k+1 \leq i+k \leq n$, so σ_{I}^{-1} maps $\left(I^{c}\right)_{i}$ to $i+k$. Overall, $\left(\sigma_{I}^{-1} \circ \sigma_{I^{c}}\right)(i)=\sigma_{I}^{-1}\left(\left(I^{c}\right)_{i}\right)=i+k$ if $1 \leq i \leq n-k$. Next, for all $n-k+1 \leq i \leq n$, we have that $\sigma_{I^{c}}$ maps i to $I_{i-(n-k)}$, the $(i-(n-k))^{\text {th }}$ element of I. Meanwhile, σ_{I} maps $i-(n-k)$ to $I_{i-(n-k)}$ because $1 \leq i-(n-k) \leq k$, so σ_{I}^{-1} maps $I_{i-(n-k)}$ to $i-(n-k)$. Overall, $\left(\sigma_{I}^{-1} \circ \sigma_{I^{c}}\right)(i)=\sigma_{I}^{-1}\left(I_{i-(n-k)}\right)=i-(n-k)$ if $n-k+1 \leq i \leq n$.
Now, to compute $(-1)^{\sigma_{I}^{-1} \circ \sigma_{I^{c}}}$, we will show how to perform multiple transpositions in a row to obtain $\sigma_{I}^{-1} \circ \sigma_{I^{c}}$. Beginning with the identity permutation:

$$
(1,2, \ldots, k, k+1, \ldots, n)
$$

we first need to transport k to position n because $\left(\sigma_{I}^{-1} \circ \sigma_{I^{c}}\right)(n)=k$. To do this, we use $n-k$ transpositions, where each transposition shifts k one position to the right. This results in the following permutation:

$$
(1,2, \ldots, k-1, k+1, \ldots, n, k) .
$$

Similarly, we apply the same procedure to transport $k-1, \ldots, 1$, in descending order. This results in the permutation:

$$
(k+1, \ldots, n, 1,2, \ldots, k)
$$

which is the permutation $\sigma_{I}^{-1} \circ \sigma_{I^{c}}$ that we needed. Since we needed to transport k elements, where each transportation procedure required $n-k$ transpositions, we obtain that $\sigma_{I}^{-1} \circ \sigma_{I^{c}}$ is
a composition of $k(n-k)$ transpositions. As a result, $(-1)^{\sigma_{I}^{-1} \circ \sigma_{I} c}=(-1)^{k(n-k)}$, so we obtain $(* \circ *) \omega_{I}=(-1)^{\sigma_{I}^{-1} \circ \sigma_{I^{c}}} \omega_{I}=(-1)^{k(n-k)} \omega_{I}$. Therefore, since $(* \circ *) \omega_{I}=(-1)^{k(n-k)} \omega_{I}$ for all basic elements ω_{I} of $\Lambda^{k}(V)$, we conclude that $(* \circ *) \omega_{I}=(-1)^{k(n-k)} \mathrm{id}$, as required.

Notes on intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions. (Note: This section was not submitted for grading.)

1. First, it was quite intuitive to identify $\Lambda^{1}\left(\mathbb{R}^{3}\right)$ with \mathbb{R}^{3} by identifying φ_{1}, φ_{2}, and φ_{3} with e_{1}, e_{2}, and e_{3}, respectively, since this was the simplest choice possible. Next, we can "work backwards" to choose how to identify $\Lambda^{2}\left(\mathbb{R}^{3}\right)$ with \mathbb{R}^{3}. In other words, for all $\left(a_{1}, a_{2}, a_{3}\right),\left(b_{1}, b_{2}, b_{3}\right) \in \mathbb{R}^{3}$, we first compare $\left(a_{1} \varphi_{1}+a_{2} \varphi_{2}+a_{3} \varphi_{3}\right) \wedge\left(b_{1} \varphi_{1}+b_{2} \varphi_{2}+b_{3} \varphi_{3}\right)$ with $\left(a_{1}, a_{2}, a_{3}\right) \times\left(b_{1}, b_{2}, b_{3}\right)$, and this comparison tells us how to identify $\Lambda^{2}\left(\mathbb{R}^{3}\right)$ with \mathbb{R}^{3}.
2. The key idea was to treat the matrix representing each L_{i} as a change of basis matrix as L_{i} pushes a basis of \mathbb{R}^{n} to another basis of \mathbb{R}^{n}. This tells us that L_{i} is orientation preserving if $\operatorname{det} L_{i}>0$, and L_{i} is orientation reversing if $\operatorname{det} L_{i}<0$. Afterward, we can finish by simply computing the determinant of each linear map.
3. First, to define ψ_{k}, we must define a linear map $\psi_{k}(\lambda) \in\left(\Lambda^{k}(V)\right)^{*}$ for all $\lambda \in \Lambda^{n-k}(V)$, which means that we must define $\left(\psi_{k}(\lambda)\right)(\eta) \in \mathbb{R}$ for all $\lambda \in \Lambda^{n-k}(V)$ and all $\eta \in \Lambda^{k}(V)$. We also wish to use the given isomorphism χ, which requires us to input an alternating n-tensor. Intuitively, this n-tensor should be $\lambda \wedge \eta$ (or $\eta \wedge \lambda$), which leads to the definition $\left(\psi_{k}(\lambda)\right)(\eta):=\chi(\lambda \wedge \eta)$. Next, we must prove that ψ_{k} satisfies the required properties. It is easy to check that ψ_{k} is linear and that $\psi_{k}(\lambda)$ is linear for all $\lambda \in \Lambda^{n-k}(V)$, so the main challenge is to prove that ψ_{k} is invertible. To do so, we use the standard linear algebra trick of proving that $\psi_{k}(\lambda) \neq 0$ for all nonzero λ. We need to find η such that $\left(\psi_{k}(\lambda)\right)(\eta)=\chi(\lambda \wedge \eta) \neq 0$, which is equivalent to $\lambda \wedge \eta$ being nonzero since χ is an isomorphism. To construct η, it would be convenient to have a basis for V, so we pick one by picking v_{1}, \ldots, v_{n-k} such that $\lambda\left(v_{1}, \ldots, v_{n-k}\right) \neq 0$, proving that v_{1}, \ldots, v_{n-k} are linearly independent, then extending to a basis v_{1}, \ldots, v_{n}. Intuitively, this process helps us ensure that λ has a nonzero $\omega_{(1, \ldots, n-k)}$-coefficient. Then, we find a matching η by picking $\eta=\omega_{(n-k+1, \ldots, n)}$. After computing that $(\lambda \wedge \eta)\left(v_{1}, \ldots, v_{n}\right) \neq 0$, we are done.
4. For part (a), our solution is motivated by the proof done in lecture for the unique existence of the wedge product. First, to prove uniqueness of $*$, we use the given conditions to compute the value of $* \omega_{I}$ for all $I \in \underline{n}_{a}^{k}$, thus showing that $*$ maps every element of $\Lambda^{k}(V)$ to exactly one possible value. After computing the values of each $* \omega_{I}$, we can also use them to obtain an explicit construction for $*$. Finally, we perform calculations using this construction to prove that there exists $*$ satisfying the required conditions.
Next, we solve part (b) using the formulas we obtained in part (a).
Next, for part (c), we begin computing $* \circ *$ by computing that $(* \circ *) \omega_{I}=(-1)^{\sigma_{I}^{-1} \circ \sigma_{I^{c}}} \omega_{I}$. Then, we must compute $(-1)^{\sigma_{I}^{-1} \circ \sigma_{I^{c}}}$. We see that $\sigma_{I^{c}} \operatorname{maps}(1, \ldots, n-k)$ to I^{c}, which σ_{I}^{-1} maps to $(k+1, \ldots, n)$. Moreover, $\sigma_{I^{c}} \operatorname{maps}(n-k+1, \ldots, n)$ to I, which σ_{I}^{-1} maps to $(1, \ldots, k)$. Intuitively, $\sigma_{I}^{-1} \circ \sigma_{I^{c}}$ breaks $(1, \ldots, n)$ into two chunks of size k and $n-k$, and then it swaps them. Next, the key idea is that this swap can also be performed via transpositions by shifting elements one-by-one. This requires $k(n-k)$ transpositions, so we get $(-1)^{\sigma_{I}^{-1} \circ \sigma_{I^{c}}} \omega_{I}=(-1)^{k(n-k)} \omega_{I}$, and we are done.
