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1. We will find a good way of identifying Λ1(R3) and Λ2(R3) with R3.
First, let (e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)) be the standard basis for R3, and let
(ϕ1, ϕ2, ϕ3) be the corresponding dual basis for Λ1(R3). Then, since (ϕ1, ϕ2, ϕ3) is a basis for
Λ1(R3), we can identify Λ1(R3) with R3 by identifying ϕ1, ϕ2, ϕ3 with e1, e2, e3, respectively.
Next, the standard basis (ωI)I∈32a for Λ2(R3) contains the alternating tensors ω23 = ϕ2 ∧ ϕ3,

ω13 = ϕ1∧ϕ3, and ω12 = ϕ1∧ϕ2. Then, (ϕ2∧ϕ3, ϕ1∧ϕ3, ϕ1∧ϕ2) is a basis for Λ2(R3). Since
ϕ3 ∧ ϕ1 = −ϕ1 ∧ ϕ3, we obtain that (ϕ2 ∧ ϕ3, ϕ3 ∧ ϕ1, ϕ1 ∧ ϕ2) is another basis for Λ2(R3). As
a result, we can identify Λ2(R3) with R3 by identifying ϕ2 ∧ ϕ3, ϕ3 ∧ ϕ1, ϕ1 ∧ ϕ2 with e1, e2, e3,
respectively.
Next, under these identifications, the wedge product ∧ : Λ1(R3)× Λ1(R3)→ Λ2(R3) becomes a
map P : R3 × R3 → R3. Then, we will check that P is the cross product on R3.
Let (a1, a2, a3), (b1, b2, b3) be any two vectors in R3. Then, by definition, their cross product is:

(a1, a2, a3)× (b1, b2, b3) = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

Additionally, we can compute P ((a1, a2, a3), (b1, b2, b3)) as follows:

= P ((a1, a2, a3), (b1, b2, b3))

= P (a1e1 + a2e2 + a3e3, b1e1 + b2e2 + b3e3)

= (a1ϕ1 + a2ϕ2 + a3ϕ3) ∧ (b1ϕ1 + b2ϕ2 + b3ϕ3) (Applying identification)

= a1b1ϕ1 ∧ ϕ1 + a1b2ϕ1 ∧ ϕ2 + a1b3ϕ1 ∧ ϕ3 + a2b1ϕ2 ∧ ϕ1 + a2b2ϕ2 ∧ ϕ2 + a2b3ϕ2 ∧ ϕ3

= + a3b1ϕ3 ∧ ϕ1 + a3b2ϕ3 ∧ ϕ2 + a3b3ϕ3 ∧ ϕ3 (Wedge product is bilinear)

= 0 + a1b2ϕ1 ∧ ϕ2 − a1b3ϕ3 ∧ ϕ1 − a2b1ϕ1 ∧ ϕ2 + 0 + a2b3ϕ2 ∧ ϕ3

= + a3b1ϕ3 ∧ ϕ1 − a3b2ϕ2 ∧ ϕ3 + 0

= (a2b3 − a3b2)ϕ2 ∧ ϕ3 + (a3b1 − a1b3)ϕ3 ∧ ϕ1 + (a1b2 − a2b1)ϕ1 ∧ ϕ2

= (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3 (Applying identification)

= (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)
= (a1, a2, a3)× (b1, b2, b3).

Therefore, P is the cross product on R3, as required.
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2. For each of the linear maps given below, we will determine whether it is orientation preserving or
reversing, assuming the standard orientation for each Rn.

(a) L1 : R2 → R2, L1(x, y) = (−x, y).
First, consider the standard basis β1 := ((1, 0), (0, 1)) of R2. Then, L1 pushes this basis to the
basis β2 := (L1(1, 0), L1(0, 1)) of R2. If we use the same orientation for both instances of R2,
then L1 is orientation preserving if and only if β1 and β2 have the same orientation. Moreover, the
change of basis matrix between β2 and β1 is the matrix representing L1 (under the standard basis
of R2), so β1 and β2 have the same orientation if and only if detL1 > 0. Thus, L1 is orientation
preserving if detL1 > 0, and L1 is orientation reversing if detL1 < 0.
Next, since L1(1, 0) = (−1, 0), and since L1(0, 1) = (0, 1), the matrix representing L1 (under the

standard basis of R2) is

(
−1 0
0 1

)
. This matrix has a determinant of (−1)(1)−(0)(0) = −1 < 0.

Thus, detL1 < 0, so L1 is orientation reversing, as required.

(b) L2 : R2 → R2, L2(x, y) = (y, x).
Similarly to part (a), L2 is orientation preserving if detL2 > 0, and L2 is orientation reversing if
detL2 < 0. Next, since L2(1, 0) = (0, 1) and L2(0, 1) = (1, 0), the matrix representing L2 (under

the standard basis of R2) is

(
0 1
1 0

)
. This matrix has a determinant of (0)(0)−(1)(1) = −1 < 0.

Thus, detL2 < 0, so L2 is orientation reversing, as required.

(c) L3 : R2 → R2, the counterclockwise rotation by 2π
7 .

Similarly to part (a), L3 is orientation preserving if detL3 > 0, and L3 is orientation reversing if
detL3 < 0. Next, since L3(1, 0) = (cos(2π7 ), sin(2π7 )) and L3(0, 1) = (− sin(2π7 ), cos(2π7 )), the

matrix representing L3 (under the standard basis of R2) is

(
cos(2π7 ) − sin(2π7 )
sin(2π7 ) cos(2π7 )

)
. This matrix

has a determinant of:

cos(
2π

7
) cos(

2π

7
)− (− sin(

2π

7
)) sin(

2π

7
) = cos2(

2π

7
) + sin2(

2π

7
) = 1 > 0.

Thus, detL3 > 0, so L3 is orientation preserving, as required.

(d) L4 : R2 → R2, the clockwise rotation by 2π
7 .

Similarly to part (a), L4 is orientation preserving if detL4 > 0, and L4 is orientation reversing if
detL4 < 0. Next, since L4(1, 0) = (cos(2π7 ),− sin(2π7 )), and since L4(0, 1) = (sin(2π7 ), cos(2π7 )),

the matrix representing L4 (under the standard basis of R2) is

(
cos(2π7 ) sin(2π7 )
− sin(2π7 ) cos(2π7 )

)
. This

matrix has a determinant of:

cos(
2π

7
) cos(

2π

7
)− sin(

2π

7
)(− sin(

2π

7
)) = cos2(

2π

7
) + sin2(

2π

7
) = 1 > 0.

Thus, detL4 > 0, so L4 is orientation preserving, as required.

(e) L5 : R2 → R2, the complex conjugation map z 7→ z, where R2 is identified with C in
the standard way.
Similarly to part (a), L5 is orientation preserving if detL5 > 0, and L5 is orientation reversing
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if detL5 < 0. Next, identifying R2 with C, since L5(1, 0) = L5(1 + 0i) = 1 + 0i = (1, 0) and
L5(0, 1) = L5(0 + i) = 0 − i = (0,−1), the matrix representing L5 (under the standard basis

of R2) is

(
1 0
0 −1

)
. This matrix has a determinant of (1)(−1) − (0)(0) = −1 < 0. Thus,

detL5 < 0, so L5 is orientation reversing, as required.

(f) L6 : R3 → R3, L6(x, y, z) = (y, z, x).
Similarly to part (a), L6 is orientation preserving if detL6 > 0, and L6 is orientation reversing if
detL6 < 0. Next, since L6(1, 0, 0) = (0, 0, 1), L6(0, 1, 0) = (1, 0, 0), and L6(0, 0, 1) = (0, 1, 0),

the matrix representing L6 (under the standard basis of R3) is

0 1 0
0 0 1
1 0 0

. This matrix has a

determinant of:

(0)(0)(0)− (0)(1)(0)− (1)(0)(0) + (1)(1)(1) + (0)(0)(0)− (0)(0)(1) = 1 > 0.

Thus, detL6 > 0, so L6 is orientation preserving, as required.

(g) L7 : Rn → Rn, L7(v) = −v.
Similarly to part (a), L7 is orientation preserving if detL7 > 0, and L7 is orientation reversing if
detL7 < 0. Next, let (e1, . . . , en) be the standard basis of Rn. Then, L7 pushes this standard
basis to (L7e1, . . . , L7en) = (−e1, . . . ,−en), so the matrix representing L7 (under the standard
basis of Rn) is −In, where In represents the identity matrix of size n. Then, since −In is a
diagonal matrix with only (−1)’s on the main diagonal, its determinant is (−1)n. We obtain
that detL7 = (−1)n = 1 > 0 if n is even, and detL7 = (−1)n = −1 < 0 if n is odd. Thus,
L7 is orientation preserving if n is even, and L7 is orientation reversing if n is odd, as required.

(h) L8 : Rm × Rn → Rn × Rm, L8(u, v) = (v, u).
Similarly to part (a), L8 is orientation preserving if detL8 > 0, and L8 is orientation reversing
if detL8 < 0. Next, let (e1, . . . , em) and (f1, . . . , fn) be the standard bases of Rm and Rn,
respectively. Then, the standard basis of Rn+m is ((e1, 0), . . . , (em, 0), (0, f1), . . . , (0, fn)), and
L8 pushes this basis to:

(L8(e1, 0), . . . , L8(em, 0), L8(0, f1), . . . , L8(0, fn)) = ((0, e1), . . . , (0, em), (f1, 0), . . . , (fn, 0)).

As a result, the matrix representing L8 (under the standard basis of Rn+m) is the block matrix(
0 In
Im 0

)
. Next, if σ ∈ Sk denotes the permutation:

(σ(1) = n+1, σ(2) = n+2 . . . , σ(m) = n+m,σ(m+1) = 1, σ(m+2) = 2, . . . , σ(n+m) = n),

then the above matrix only has nonzero entries at locations of the form (i, σ(i)). Moreover, all
nonzero entries in the matrix are 1. Thus, its determinant is (−1)σ.
Next, to compute (−1)σ, we will show how to perform multiple transpositions in a row to construct
σ. Beginning with the identity permutation:

(1, 2, . . . , n, n+ 1, . . . , n+m),

we first need to transport n to position n + m because σ(n + m) = n. To do this, we use m
transpositions, where each transposition shifts n one position to the right. This results in the
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following permutation:
(1, 2, . . . , n− 1, n+ 1, . . . , n+m,n).

Similarly, we apply the same procedure to transport n−1, . . . , 1, in descending order. This results
in the permutation:

(n+ 1, . . . , n+m, 1, 2, . . . , n),

which is the permutation σ that we needed. Since we needed to transport n elements, and since
each transportation procedure required m transpositions, we obtain that σ is a composition of
mn transpositions. As a result, detL8 = (−1)σ = (−1)mn. Moreover, (−1)mn = 1 > 0 if m or
n is even, and (−1)mn = −1 < 0 otherwise. Thus, L8 is orientation preserving if m or n is even,
and L8 is orientation reversing otherwise, as required.
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3. We are given an n-dimensional vector space V and an isomorphism χ : Λn(V )→ R. We are also
given an integer 0 ≤ k ≤ n. Then, we will construct an isomorphism ψk : Λn−k(V )→ (Λk(V ))∗

that does not depend on any additional choices.
First, let us define a map ψk : Λn−k(V )→ (Λk(V ))∗ by (ψk(λ))(η) = χ(λ∧η) for all λ ∈ Λn−k(V )
and all η ∈ Λk(V ). Note that ψk does not depend on any additional choices. (However, we will
have to choose bases later on in our proof.)
Next, for this definition to be valid, we must check that ψk(λ) ∈ (Λk(V ))∗ for all λ ∈ Λn−k(V );
in other words, we must check that ψk(λ) : Λk(V ) → R is linear. Indeed, we will show that
(ψk(λ))(c1η1 + c2η2) = c1(ψk(λ))(η1) + c2(ψk(λ))(η2) for all η1, η2 ∈ Λk(V ) and all c1, c2 ∈ R:

(ψk(λ))(c1η1 + c2η2) = χ(λ ∧ (c1η1 + c2η2))

= χ(c1λ ∧ η1 + c2λ ∧ η2) (Wedge product is bilinear)

= c1χ(λ ∧ η1) + c2χ(λ ∧ η2) (χ is linear)

= c1(ψk(λ))(η1) + c2(ψk(λ))(η2).

Thus, ψk(λ) ∈ (Λk(V ))∗ for all λ ∈ Λn−k(V ), as required.
Next, we will show that ψk is linear by showing that ψk(c1λ1 + c2λ2) = c1ψk(λ1) + c2ψk(λ2) for
all λ1, λ2 ∈ Λn−k(V ) and all c1, c2 ∈ R. Indeed, for all η ∈ Λk(V ), we have:

(ψk(c1λ1 + c2λ2))(η) = χ((c1λ1 + c2λ2) ∧ η)

= χ(c1λ1 ∧ η + c2λ2 ∧ η) (Wedge product is bilinear)

= c1χ(λ1 ∧ η) + c2χ(λ2 ∧ η) (χ is linear)

= c1(ψk(λ1))(η) + c2(ψk(λ2))(η)

= (c1ψk(λ1) + c2ψk(λ2))(η)

Since (ψk(c1λ1 + c2λ2))(η) = (c1ψk(λ1) + c2ψk(λ2))(η) for all η ∈ Λk(V ), we obtain that
ψk(c1λ1 + c2λ2) = c1ψk(λ1) + c2ψk(λ2). Therefore, ψk is linear, as required.
Next, we will show that ψk is injective. Since ψk is linear, it suffices to show that ψk(λ) is nonzero
for all nonzero λ ∈ Λn−k(V ).
Let λ be any nonzero element of Λn−k(V ). Then, there exist vectors v1, . . . , vn−k ∈ V such that
λ(v1, . . . , vn−k) 6= 0. Moreover, we claim that v1, . . . , vn−k must be linearly independent. If we
assume for contradiction that they are linearly dependent, then there exists 1 ≤ i ≤ n − k such
that vi is a linear combination of v1, . . . , vi−1, so we can write vi = a1v1 + · · · + ai−1vi−1 for
some a1, . . . , ai−1 ∈ R. Then, we would obtain:

= λ(v1, . . . , vi, . . . , vn−k)

= λ(v1, . . . , a1v1 + · · ·+ ai−1vi−1, . . . , vn−k)

= a1λ(v1, . . . , v1, . . . , vn−k) + · · ·+ ai−1λ(v1, . . . , vi−1, . . . , vn−k) (λ is (n− k)-linear)

= a1 · 0 + · · ·+ ai−1 · 0 (λ kills repetitions)

= 0,

contradicting our condition that λ(v1, . . . , vn−k) 6= 0. Thus, by contradiction, v1, . . . , vn−k are
linearly independent.
Next, we can extend (v1, . . . , vn−k) to a basis (v1, . . . , vn) of V . Then, let (ϕ1, . . . , ϕn) be the
corresponding dual basis for Λ1(V ), and let {ωI}I∈nk

a
be the corresponding basis for Λk(V ). Let

us pick I = (n−k+1, . . . , n) ∈ nka, and let us also pick η := ωI ∈ Λk(V ). Then, we can compute
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(λ ∧ η)(v1, . . . , vn) as follows:

= (λ ∧ η)(v1, . . . , vn)

=
∑
σ∈Sn

σ(1)<···<σ(n−k)
σ(n−k+1)<···<σ(n)

(−1)σλ(vσ(1), . . . , vσ(n−k))η(vσ(n−k+1), . . . , vσ(n)) (Definition of wedge product)

=
∑
σ∈Sn

σ(1)<···<σ(n−k)
σ(n−k+1)<···<σ(n)

(−1)σλ(vσ(1), . . . , vσ(n−k))ωI(vσ(n−k+1), . . . , vσ(n)).

Since σ(n − k + 1) < · · · < σ(n), we have (σ(n − k + 1), . . . , σ(n)) ∈ nka. As a result,
ωI(vσ(n−k+1), . . . , vσ(n)) = 1 if (σ(n − k + 1), . . . , σ(n)) = I = (n − k + 1, . . . , n), and
ωI(vσ(n−k+1), . . . , vσ(n)) = 0 otherwise. Thus, a term in the summation above is nonzero only
if σ(n − k + 1) = n − k + 1, σ(n − k + 2) = n − k + 2, . . . , σ(n) = n. Since we also require
σ(1), . . . , σ(n − k) to be in increasing order, the only permutation σ that satisfies this is the
identity permutation, which we will denote id. Then, we obtain:

(λ ∧ η)(v1, . . . , vn) =
∑
σ∈Sn

σ(1)<···<σ(n−k)
σ(n−k+1)<···<σ(n)

(−1)σλ(vσ(1), . . . , vσ(n−k))ωI(vσ(n−k+1), . . . , vσ(n))

= (−1)idλ(vid(1), . . . , vid(n−k))ωI(vid(n−k+1), . . . , vid(n))

= 1 · λ(v1, . . . , vn−k)ωI(vn−k+1, . . . , vn)

= 1 · λ(v1, . . . , vn−k) · 1
= λ(v1, . . . , vn−k)

6= 0.

Since (λ∧η)(v1, . . . , vn) is nonzero, we obtain that λ∧η is nonzero. Then, since χ : Λn(V )→ R
is an isomorphism, χ(λ ∧ η) is also nonzero. As a result, (ψk(λ))(η) = χ(λ ∧ η) is also nonzero.
Finally, since we found η ∈ Λk(V ) such that (ψk(λ))(η) is nonzero, we conclude that ψk(λ) is
nonzero. This is true for all nonzero λ ∈ Λn−k(V ), so ψk is an injective linear map, as desired.
Next, the dimension of Λn−k(V ) is

(
n

n−k
)
. Additionally, the dimension of (Λk(V ))∗ equals the

dimension of Λk(V ), which is
(
n
k

)
=
(
n

n−k
)
. Then, Λn−k(V ) has the same dimension as (Λk(V ))∗.

Therefore, since ψk : Λn−k(V ) → (Λk(V ))∗ is an injective linear map, it follows that ψk is an
isomorphism, as required.
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4. We are given an n-dimensional vector space V with a basis (vi) and a dual basis (ϕj). We are
also given an integer k with 0 ≤ k ≤ n. Finally, we are given an inner product on Λk(V ) defined
by 〈ωI , ωJ〉 = δIJ , and we define ωn ∈ Λn(V ) by ωn := ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn.

(a) We will show that there is a unique isomorphism ∗ : Λk(V ) → Λn−k(V ) that satisfies
λ ∧ (∗η) = 〈λ, η〉ωn for all λ, η ∈ Λk(V ).
Step 0: We will introduce some useful notation.
First, for all I ∈ nka, let Ic be the ascending sequence in nn−ka containing all integers in {1, . . . , n}
which do not appear in I. Also, let σI ∈ Sn be the permutation on {1, . . . , n} that maps 1, . . . , k
to the elements of I in ascending order and maps k+ 1, . . . , n to the elements of Ic in ascending
order.
Step 1: We will show that if ∗ exists, then it must be unique. To do this, we will compute the
value of ∗ωI for every basic element ωI of Λk(V ).
First, ∗ωI can be written in terms of basic elements of Λn−k(V ) as

∑
J∈nn−k

a
aJωJ , where each

aJ is a real coefficient. Then, for all I ′ ∈ nka, we obtain:

= (ωI′ ∧ (∗ωI))(v1, . . . , vn)

= (ωI′ ∧
∑

J∈nn−k
a

aJωJ)(v1, . . . , vn)

=
∑

J∈nn−k
a

aJ(ωI′ ∧ ωJ)(v1, . . . , vn) (Wedge product is bilinear)

=
∑

J∈nn−k
a

∑
σ∈Sn

σ(1)<···<σ(k)
σ(k+1)<···<σ(n)

aJ(−1)σωI′(vσ(1), . . . , vσ(k))ωJ(vσ(k+1), . . . , vσ(n)) (Definition of wedge product)

Since I ′ and (σ(1), . . . , σ(k)) are both elements of nka, we obtain that ωI′(vσ(1), . . . , vσ(k)) = 1
if I ′ = (σ(1), . . . , σ(k)), and ωI′(vσ(1), . . . , vσ(k)) = 0 otherwise. Then, a term in the above
summation is nonzero only if σ maps 1, . . . , k to the elements of I ′ in ascending order. Next,
since (σ(k + 1), . . . , σ(n)) must also be in increasing order, we obtain that σ maps k + 1, . . . , n
to elements of (I ′)c in increasing order, so σ = σI′ . Finally, since (σ(k + 1), . . . , σ(n)) = (I ′)c

and J are both in nn−ka , we obtain ωJ(vσ(k+1), . . . , vσ(n)) = 1 if J = (I ′)c, and we obtain
ωJ(vσ(k+1), . . . , vσ(n)) = 0 otherwise. Overall, a term in the above summation is nonzero only if
J = (I ′)c and σ = σI′ , so we obtain:

(ωI′ ∧ (∗ωI))(v1, . . . , vn) = a(I′)c(−1)σI′ωI′(vI′)ω(I′)c(v(I′)c)

= a(I′)c(−1)σI′ · 1 · 1
= a(I′)c(−1)σI′ . (1)

Next, we need ωI′ ∧ (∗ωI) = 〈ωI′ , ωI〉ωn, so we obtain:

(ωI′ ∧ (∗ωI))(v1, . . . , vn) = 〈ωI′ , ωI〉ωn(v1, . . . , vn)

= 〈ωI′ , ωI〉 · 1
= 〈ωI′ , ωI〉.

It follows from (1) that a(I′)c(−1)σI′ = 〈ωI′ , ωI〉, so a(I′)c = (−1)σI′ 〈ωI′ , ωI〉. Also, we are given
that 〈ωI′ , ωI〉 = 1 if I ′ = I and 〈ωI′ , ωI〉 = 0 otherwise. Then, aIc = (−1)σI · 1 = (−1)σI , and
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a(I′)c = (−1)σI′ · 0 = 0 for all I ′ 6= I. Additionally, (I ′)c takes the value of every sequence in

nn−ka exactly once as I ′ ranges across nka; indeed, for all J ∈ nn−ka , we have (I ′)c = J if and only
if I ′ is the unique ascending sequence containing all integers in {1, . . . , n} excluded from J . As a
result, aJ = 0 for all J 6= Ic. Therefore, ∗ωI must equal

∑
J∈nn−k

a
aJωJ = aIcωIc = (−1)σIωIc .

Since ∗ωI is uniquely determined for all I ∈ nka, and since {ωI}I∈nk
a

is a basis for Λk(V ), it follows
that ∗ must be unique if it exists, as required.
Step 2: We will show that ∗ exists by constructing ∗.
Let ∗ : Λk(V )→ Λn−k(V ) be the linear map defined by ∗ωI := (−1)σIωIc for all basic elements
ωI of Λk(V ). First, as shown above, Ic takes the value of every sequence in nn−ka exactly once
as I ranges across nka. As a result, {ωIc}I∈nk

a
= {ωJ}J∈nn−k

a
is the standard basis for Λn−k(V ),

so {∗ωI}I∈nk
a

is also a basis for Λn−k(V ). This shows that ∗ is an isomorphism, as required.

(Formally, ∗ is surjective because {∗ωI}I∈nk
a

spans Λn−k(V ), then ∗ is an isomorphism because

Λk(V ) and Λn−k(V ) have the same dimension of
(
n
k

)
=
(
n

n−k
)
.)

Next, we must check that λ ∧ (∗η) = 〈λ, η〉ωn for all λ, η ∈ Λk(V ). Since both sides are bilinear
in terms of (λ, η), it suffices to check this equality for all λ, η in the standard basis of Λk(V ).
Then, let λ = ωI′ and η = ωI , where I ′, I ∈ nka. We have two cases: I ′ = I or I ′ 6= I.
Case 1: I ′ = I. Then, we have ∗ωI = (−1)σIωIc = (−1)σI′ω(I′)c , so ∗ωI has an ω(I′)c-coefficient
of (−1)σI′ . According to (1), it follows that:

(ωI′ ∧ (∗ωI))(v1, . . . , vn) = (−1)σI′ (−1)σI′ = 1.

Next, since ωI′ ∧ (∗ωI) ∈ Λn(V ), and since {ωn} is a basis of the 1-dimensional space Λn(V ),
we can write ωI′ ∧ (∗ωI) = cωn for some real constant c. Then, we obtain:

(ωI′ ∧ (∗ωI))(v1, . . . , vn) = cωn(v1, . . . , vn)

1 = c · 1
1 = c.

Since c = 1, it follows that ωI′ ∧ (∗ωI) = ωn. Moreover, since I ′ = I, we have 〈ωI′ , ωI〉 = 1, so
〈ωI′ , ωI〉ωn = ωn. Thus, ωI′ ∧ (∗ωI) = 〈ωI′ , ωI〉ωn if I ′ = I, as required.
Case 2: I ′ 6= I. Then, ∗ωI = (−1)σIωIc , where Ic 6= (I ′)c, so ∗ωI has an ω(I′)c-coefficient of 0.
According to (1), it follows that:

(ωI′ ∧ (∗ωI))(v1, . . . , vn) = 0 · (−1)σI′ = 0.

Next, since ωI′ ∧ (∗ωI) ∈ Λn(V ), and since {ωn} is a basis of the 1-dimensional space Λn(V ),
we can write ωI′ ∧ (∗ωI) = cωn for some real constant c. Then, we obtain:

(ωI′ ∧ (∗ωI))(v1, . . . , vn) = cωn(v1, . . . , vn)

0 = c · 1
0 = c.

Since c = 0, it follows that ωI′ ∧ (∗ωI) = 0ωn. Moreover, since I ′ 6= I, we have 〈ωI′ , ωI〉 = 0, so
〈ωI′ , ωI〉ωn = 0ωn. Thus, ωI′ ∧ (∗ωI) = 〈ωI′ , ωI〉ωn if I ′ 6= I, as required.
Overall, we proved by cases that ωI′ ∧ (∗ωI) = 〈ωI′ , ωI〉ωn for all I ′, I ∈ nka. As a result, our
construction for the linear isomorphism ∗ satisfies λ ∧ (∗η) = 〈λ, η〉ωn.
Therefore, there is a unique isomorphism ∗ : Λk(V )→ Λn−k(V ) that satisfies λ∧(∗η) = 〈λ, η〉ωn
for all λ, η ∈ Λk(V ), as required.
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(b) First, given n = 3 and k = 1, we will compute ∗ω1, ∗ω2, and ω3.
In part (a), when we proved that ∗ is unique, we also proved the formula ∗ωI = (−1)σIωIc for all
I ∈ nka. First, if I = (1) ∈ 31a, then we have Ic = (2, 3). We get σI(1) = 1 since I = (1), and we
also get σI(2) = 2 and σI(3) = 3 since Ic = (2, 3). Then, σI is the identity permutation, so we
obtain (−1)σI = 1. Overall, if I = (1), then ∗ω1 = ∗ωI = (−1)σIωIc = ω23.
Next, if I = (2) ∈ 31a, then we have Ic = (1, 3). We get σI(1) = 2 since I = (2), and we also get
σI(2) = 1 and σI(3) = 3 since Ic = (1, 3). Then, σI is the permutation that transposes 1 and 2,
so (−1)σI = −1. Overall, if I = (2), then ∗ω2 = ∗ωI = (−1)σIωIc = −ω13.
Next, if I = (3) ∈ 31a, then we have Ic = (1, 2). We get σI(1) = 3 since I = (3), and we also get
σI(2) = 1 and σI(3) = 2 since Ic = (1, 2). Then, σI is the permutation that transposes 1 and 2
to get the permutation (2, 1, 3), followed by transposing 2 and 3 to get the permutation (3, 1, 2).
As a result, (−1)σI = (−1)2 = 1. Overall, if I = (3), then ∗ω3 = ∗ωI = (−1)σIωIc = ω12.
Our results for n = 3 and k = 1 are summarized in the table below:

ωI ∗ωI
ω1 ω23

ω2 −ω13

ω3 ω12

Next, given n = 4 and k = 2, we will compute ∗ω12, ∗ω13, ∗ω14, ∗ω23, ∗ω24, and ∗ω34.
First, if I = (1, 2) ∈ 42a, then we have Ic = (3, 4). We get σI(1) = 1 and σI(2) = 2 since
I = (1, 2), and we also get σI(3) = 3 and σI(4) = 4 since Ic = (3, 4). Then, σI is the identity
permutation, so (−1)σI = 1. Overall, if I = (1, 2), then ∗ω12 = ∗ωI = (−1)σIωIc = ω34.
Next, if I = (1, 3) ∈ 42a, then we have Ic = (2, 4). We get σI(1) = 1 and σI(2) = 3 since
I = (1, 3), and we also get σI(3) = 2 and σI(4) = 4 since Ic = (2, 4). Then, σI is the
permutation that transposes 2 and 3, so (−1)σI = −1. Overall, if I = (1, 3), then we obtain
∗ω13 = ∗ωI = (−1)σIωIc = −ω24.
Next, if I = (1, 4) ∈ 42a, then we have Ic = (2, 3). We get σI(1) = 1 and σI(2) = 4 since
I = (1, 4), and we also get σI(3) = 2 and σI(4) = 3 since Ic = (2, 3). Then, σI is the
permutation that transposes 2 and 3 to get the permutation (1, 3, 2, 4), followed by transposing 3
and 4 to get the permutation (1, 4, 2, 3). As a result, (−1)σI = (−1)2 = 1. Overall, if I = (1, 4),
then ∗ω14 = ∗ωI = (−1)σIωIc = ω23.
Next, if I = (2, 3) ∈ 42a, then we have Ic = (1, 4). We get σI(1) = 2 and σI(2) = 3 since
I = (2, 3), and we also get σI(3) = 1 and σI(4) = 4 since Ic = (1, 4). Then, σI is the
permutation that transposes 1 and 3 to get the permutation (3, 2, 1, 4), followed by transposing 2
and 3 to get the permutation (2, 3, 1, 4). As a result, (−1)σI = (−1)2 = 1. Overall, if I = (2, 3),
then ∗ω23 = ∗ωI = (−1)σIωIc = ω14.
Next, if I = (2, 4) ∈ 42a, then we have Ic = (1, 3). We get σI(1) = 2 and σI(2) = 4 since
I = (2, 4), and we also get σI(3) = 1 and σI(4) = 3 since Ic = (1, 3). Then, σI is the permutation
that transposes 1 and 3 to get the permutation (3, 2, 1, 4), followed by transposing 2 and 3 to get
the permutation (2, 3, 1, 4), followed by transposing 3 and 4 to get the permutation (2, 4, 1, 3). As
a result, (−1)σI = (−1)3 = −1. Overall, if I = (2, 4), then ∗ω24 = ∗ωI = (−1)σIωIc = −ω13.
Next, if I = (3, 4) ∈ 42a, then we have Ic = (1, 2). We get σI(1) = 3 and σI(2) = 4 since
I = (3, 4), and we also get σI(3) = 1 and σI(4) = 2 since Ic = (1, 2). Then, σI is the
permutation that transposes 1 and 3, followed by transposing 2 and 4, so (−1)σI = (−1)2 = 1.
Overall, if I = (3, 4), then ∗ω34 = ∗ωI = (−1)σIωIc = ω12.
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Our results for n = 4 and k = 2 are summarized in the table below:

ωI ∗ωI
ω12 ω34

ω13 −ω24

ω14 ω23

ω23 ω14

ω24 −ω13

ω34 ω12

(c) We will show that ∗ ◦ ∗, which is a composition Λk(V ) → Λn−k(V ) → Λk(V ), is equal
to (−1)k(n−k) id, where id denotes the identity map of Λk(V ).
First, since ∗ ◦ ∗ and (−1)k(n−k) id are both linear, it suffices to show that they agree on the
standard basis of Λk(V ). Then, it suffices to show that (∗ ◦ ∗)ωI = (−1)k(n−k)ωI for all I ∈ nka.
First, we can evaluate (∗ ◦ ∗)ωI as follows:

(∗ ◦ ∗)ωI = ∗(∗ωI)
= ∗((−1)σIωIc)

= (−1)σI (∗ωIc)
= (−1)σI ((−1)σIcω(Ic)c)

= (−1)σI (−1)σIcωI

= (−1)σ
−1
I (−1)σIcωI

= (−1)σ
−1
I ◦σIcωI

Next, we will examine the behaviour of the permutation σ−1I ◦ σIc . For all 1 ≤ i ≤ n − k, we
have that σIc maps i to (Ic)i, the ith element of Ic. Meanwhile, σI maps i+ k to (Ic)i because
k + 1 ≤ i + k ≤ n, so σ−1I maps (Ic)i to i + k. Overall, (σ−1I ◦ σIc)(i) = σ−1I ((Ic)i) = i + k
if 1 ≤ i ≤ n − k. Next, for all n − k + 1 ≤ i ≤ n, we have that σIc maps i to Ii−(n−k), the

(i−(n−k))th element of I. Meanwhile, σI maps i−(n−k) to Ii−(n−k) because 1 ≤ i−(n−k) ≤ k,

so σ−1I maps Ii−(n−k) to i − (n − k). Overall, (σ−1I ◦ σIc)(i) = σ−1I (Ii−(n−k)) = i − (n − k) if
n− k + 1 ≤ i ≤ n.
Now, to compute (−1)σ

−1
I ◦σIc , we will show how to perform multiple transpositions in a row to

obtain σ−1I ◦ σIc . Beginning with the identity permutation:

(1, 2, . . . , k, k + 1, . . . , n),

we first need to transport k to position n because (σ−1I ◦ σIc)(n) = k. To do this, we use n− k
transpositions, where each transposition shifts k one position to the right. This results in the
following permutation:

(1, 2, . . . , k − 1, k + 1, . . . , n, k).

Similarly, we apply the same procedure to transport k−1, . . . , 1, in descending order. This results
in the permutation:

(k + 1, . . . , n, 1, 2, . . . , k),

which is the permutation σ−1I ◦ σIc that we needed. Since we needed to transport k elements,
where each transportation procedure required n − k transpositions, we obtain that σ−1I ◦ σIc is
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a composition of k(n − k) transpositions. As a result, (−1)σ
−1
I ◦σIc = (−1)k(n−k), so we obtain

(∗ ◦ ∗)ωI = (−1)σ
−1
I ◦σIcωI = (−1)k(n−k)ωI . Therefore, since (∗ ◦ ∗)ωI = (−1)k(n−k)ωI for all

basic elements ωI of Λk(V ), we conclude that (∗ ◦ ∗)ωI = (−1)k(n−k) id, as required.

12



Notes on intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions.
(Note: This section was not submitted for grading.)

1. First, it was quite intuitive to identify Λ1(R3) with R3 by identifying ϕ1, ϕ2, and ϕ3 with e1, e2,
and e3, respectively, since this was the simplest choice possible. Next, we can ”work backwards”
to choose how to identify Λ2(R3) with R3. In other words, for all (a1, a2, a3), (b1, b2, b3) ∈ R3,
we first compare (a1ϕ1 +a2ϕ2 +a3ϕ3)∧ (b1ϕ1 + b2ϕ2 + b3ϕ3) with (a1, a2, a3)× (b1, b2, b3), and
this comparison tells us how to identify Λ2(R3) with R3.

2. The key idea was to treat the matrix representing each Li as a change of basis matrix as Li pushes
a basis of Rn to another basis of Rn. This tells us that Li is orientation preserving if detLi > 0,
and Li is orientation reversing if detLi < 0. Afterward, we can finish by simply computing the
determinant of each linear map.

3. First, to define ψk, we must define a linear map ψk(λ) ∈ (Λk(V ))∗ for all λ ∈ Λn−k(V ), which
means that we must define (ψk(λ))(η) ∈ R for all λ ∈ Λn−k(V ) and all η ∈ Λk(V ). We also wish
to use the given isomorphism χ, which requires us to input an alternating n-tensor. Intuitively,
this n-tensor should be λ ∧ η (or η ∧ λ), which leads to the definition (ψk(λ))(η) := χ(λ ∧ η).
Next, we must prove that ψk satisfies the required properties. It is easy to check that ψk is
linear and that ψk(λ) is linear for all λ ∈ Λn−k(V ), so the main challenge is to prove that ψk
is invertible. To do so, we use the standard linear algebra trick of proving that ψk(λ) 6= 0 for
all nonzero λ. We need to find η such that (ψk(λ))(η) = χ(λ ∧ η) 6= 0, which is equivalent to
λ ∧ η being nonzero since χ is an isomorphism. To construct η, it would be convenient to have
a basis for V , so we pick one by picking v1, . . . , vn−k such that λ(v1, . . . , vn−k) 6= 0, proving
that v1, . . . , vn−k are linearly independent, then extending to a basis v1, . . . , vn. Intuitively, this
process helps us ensure that λ has a nonzero ω(1,...,n−k)-coefficient. Then, we find a matching η
by picking η = ω(n−k+1,...,n). After computing that (λ ∧ η)(v1, . . . , vn) 6= 0, we are done.

4. For part (a), our solution is motivated by the proof done in lecture for the unique existence of
the wedge product. First, to prove uniqueness of ∗, we use the given conditions to compute the
value of ∗ωI for all I ∈ nka, thus showing that ∗ maps every element of Λk(V ) to exactly one
possible value. After computing the values of each ∗ωI , we can also use them to obtain an explicit
construction for ∗. Finally, we perform calculations using this construction to prove that there
exists ∗ satisfying the required conditions.
Next, we solve part (b) using the formulas we obtained in part (a).

Next, for part (c), we begin computing ∗◦∗ by computing that (∗◦∗)ωI = (−1)σ
−1
I ◦σIcωI . Then,

we must compute (−1)σ
−1
I ◦σIc . We see that σIc maps (1, . . . , n − k) to Ic, which σ−1I maps

to (k + 1, . . . , n). Moreover, σIc maps (n − k + 1, . . . , n) to I, which σ−1I maps to (1, . . . , k).
Intuitively, σ−1I ◦σIc breaks (1, . . . , n) into two chunks of size k and n−k, and then it swaps them.
Next, the key idea is that this swap can also be performed via transpositions by shifting elements
one-by-one. This requires k(n−k) transpositions, so we get (−1)σ

−1
I ◦σIcωI = (−1)k(n−k)ωI , and

we are done.
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