MAT257 Assignment 12 (Alternating tensors)

(Author's name here)
February 4, 2022

1. We are given the following functions from $\mathbb{R}^{4} \times \mathbb{R}^{4}$ to \mathbb{R} :

$$
\begin{gathered}
f(x, y):=x_{1} y_{2}-x_{2} y_{1}+x_{1} y_{1} \\
g(x, y):=x_{1} y_{3}-x_{3} y_{2} \\
h(x, y):=\left(x_{1}\right)^{3}\left(y_{2}\right)^{3}-\left(x_{2}\right)^{3}\left(y_{1}\right)^{3}
\end{gathered}
$$

We will determine whether or not these functions are alternating tensors.
First, we claim that f is not an alternating tensor. Consider the vectors $u=(1,0,0,0)$ and $v=(1,0,0,0)$. Then, we can compare $f(u, v)$ with $f(v, u)$ as follows:

$$
\begin{aligned}
f(u, v) & =u_{1} v_{2}-u_{2} v_{1}+u_{1} v_{1} \\
& =1 \cdot 0-0 \cdot 1+1 \cdot 1 \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
f(v, u) & =v_{1} u_{2}-v_{2} u_{1}+v_{1} u_{1} \\
& =1 \cdot 0-0 \cdot 1+1 \cdot 1 \\
& =1
\end{aligned}
$$

Since $f(u, v) \neq-f(v, u)$, we conclude that f is not an alternating tensor, as required.

Next, we claim that g is not an alternating tensor. Consider the vectors $u=(1,0,0,0)$ and $v=(0,0,1,0)$. Then, we can compare $g(u, v)$ with $g(v, u)$ as follows:

$$
\begin{aligned}
g(u, v) & =u_{1} v_{3}-u_{3} v_{2} \\
& =1 \cdot 1-0 \cdot 0 \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
g(v, u) & =v_{1} u_{3}-v_{3} u_{2} \\
& =0 \cdot 0-1 \cdot 0 \\
& =0
\end{aligned}
$$

Since $g(u, v) \neq-g(v, u)$, we conclude that g is not an alternating tensor, as required.
Next, we claim that h is not an alternating tensor because h is not bilinear. Consider the vectors $u=(1,0,0,0)$ and $v=(0,1,0,0)$. Then, we can compare $h(u, v)$ with $h(2 u, v)$ as follows:

$$
\begin{array}{rlrl}
h(u, v) & =\left(u_{1}\right)^{3}\left(v_{2}\right)^{3}-\left(u_{2}\right)^{3}\left(v_{1}\right)^{3} & h(2 u, v) & =\left(2 u_{1}\right)^{3}\left(v_{2}\right)^{3}-\left(2 u_{2}\right)^{3}\left(v_{1}\right)^{3} \\
& =1^{3} \cdot 1^{3}-0^{3} \cdot 0^{3} & & =2^{3} \cdot 1^{3}-0^{3} \cdot 0^{3} \\
& =1 & & =8
\end{array}
$$

Since $h(2 u, v) \neq 2 h(u, v)$, we conclude that h is not bilinear, so h is also not an alternating tensor, as required.
2. We are given that the determinant det : $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$, when viewed as a function of n column vectors of length n, is an alternating tensor. Then, we will write it in terms of the elementary alternating tensors ω_{I}, where $I \in \underline{n}_{a}^{n}$, assuming the standard basis $\left(e_{1}, \ldots, e_{n}\right)$ of \mathbb{R}^{n}.
First, the only element of \underline{n}_{a}^{n} is $(1,2, \ldots, n)$ because an increasing sequence containing n distinct elements from $\{1, \ldots, n\}$ must contain all elements from $\{1, \ldots, n\}$ in increasing order. Then, let us denote $I_{0}:=(1,2, \ldots, n)$. We will show that det $=\omega_{I_{0}}$.
In lecture, we proved that two alternating tensors are equal if and only if they agree on arguments of the form v_{I}, where $I \in \underline{n}_{a}^{n}$. Thus, it suffices to prove that $\operatorname{det}\left(v_{I_{0}}\right)=\omega_{I_{0}}\left(v_{I_{0}}\right)$. We also proved in lecture that $\omega_{I}\left(v_{I}\right)=1$ for all $I \in \underline{n}_{a}^{n}$, so $\omega_{I_{0}}\left(v_{I_{0}}\right)=1$. Then, it suffices to prove that $\operatorname{det}\left(v_{I_{0}}\right)=1$, which we will prove below:

$$
\begin{aligned}
\operatorname{det}\left(v_{I_{0}}\right) & =\operatorname{det}\left(e_{1}, \ldots, e_{n}\right) \\
& =\operatorname{det} I_{n} \\
& =1,
\end{aligned}
$$

where I_{n} denotes the identity matrix of size n. Since $\operatorname{det}\left(v_{I_{0}}\right)=1=\omega_{I_{0}}\left(v_{I_{0}}\right)$, we conclude that $\operatorname{det}=\omega_{I_{0}}$, as required.
3. We are given a linear transformation $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ represented by a matrix $A=\left(a_{i, j}\right) \in M_{n \times m}(\mathbb{R})$ relative to the standard basis $\left(e_{1}, \ldots, e_{n}\right)$ of \mathbb{R}^{n} and the standard basis $\left(f_{1}, \ldots, f_{m}\right)$ of \mathbb{R}^{m}. Given an elementary alternating k-tensor ω_{I} on \mathbb{R}^{n}, where $I=\left(i_{1}, \ldots, i_{k}\right) \in \underline{n}_{a}^{k}$, we will write $L^{*} \omega_{I}$ as a linear combination $\sum_{J \in m_{a}^{k}} c_{J} \omega_{J}$ of the elementary alternating k-tensors ω_{J} on \mathbb{R}^{m}.
First, let us verify that $L^{*} \omega_{I}$ is an alternating k-tensor on \mathbb{R}^{m}. For all $v_{1}, \ldots, v_{k} \in \mathbb{R}^{m}$ and all $\sigma \in S_{k}$, we have:

$$
\begin{aligned}
\left(\left(L^{*} \omega_{I}\right) \circ \sigma^{*}\right)\left(v_{1}, \ldots, v_{k}\right) & =\left(L^{*} \omega_{I}\right)\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \\
& =\omega_{I}\left(L v_{\sigma(1)}, \ldots, L v_{\sigma(k)}\right) \\
& =\left(\omega_{I} \circ \sigma^{*}\right)\left(L v_{1}, \ldots, L v_{k}\right) \\
& =(-1)^{\sigma} \omega_{I}\left(L v_{1}, \ldots, L v_{k}\right) \quad \text { (Since } \omega_{I} \text { is alternating) } \\
& =(-1)^{\sigma}\left(L^{*} \omega_{I}\right)\left(v_{1}, \ldots, v_{k}\right) .
\end{aligned}
$$

Since $\left(\left(L^{*} \omega_{I}\right) \circ \sigma^{*}\right)\left(v_{1}, \ldots, v_{k}\right)=(-1)^{\sigma}\left(L^{*} \omega_{I}\right)\left(v_{1}, \ldots, v_{k}\right)$ for all $v_{1}, \ldots, v_{k} \in \mathbb{R}^{m}$ and all $\sigma \in S_{k}$, we conclude that $L^{*} \omega_{I}$ is alternating, as desired.
Next, for all $J=\left(j_{1}, \ldots, j_{k}\right) \in \underline{m}_{a}^{k}$, let us define the matrix $A_{I, J}$ as follows:

$$
A_{I, J}:=\left(\begin{array}{cccc}
a_{i_{1}, j_{1}} & a_{i_{1}, j_{2}} & \cdots & a_{i_{1}, j_{k}} \\
a_{i_{2}, j_{1}} & a_{i_{2}, j_{2}} & \cdots & a_{i_{2}, j_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
a_{i_{k}, j_{1}} & a_{i_{k}, j_{2}} & \cdots & a_{i_{k}, j_{k}}
\end{array}\right) .
$$

Then, we will prove that $L^{*} \omega_{I}=\sum_{J \in \underline{\underline{m}}_{a}^{k}} \operatorname{det}\left(A_{I, J}\right) \omega_{J}$.
First, we proved in lecture that two alternating tensors on \mathbb{R}^{m} are equal if and only if they agree on arguments of the form $v_{J} \in\left(\mathbb{R}^{m}\right)^{k}$, where $J \in \underline{m}_{a}^{k}$. Then, to prove that $L^{*} \omega_{I}$ equals $\sum_{J \in \underline{m}_{a}^{k}} \operatorname{det}\left(A_{I, J}\right) \omega_{J}$, it suffices to show that $\left(L^{*} \omega_{I}\right)\left(v_{J}\right)=\left(\sum_{J^{\prime} \in \underline{m}_{a}^{k}} \operatorname{det}\left(A_{I, J^{\prime}}\right) \omega_{J^{\prime}}\right)\left(v_{J}\right)$ for all $J=\left(j_{1}, \ldots, j_{k}\right) \in \underline{m}_{a}^{k}$. First, we can evaluate $\left(L^{*} \omega_{I}\right)\left(v_{J}\right)$ as follows:

$$
\begin{aligned}
\left(L^{*} \omega_{I}\right)\left(v_{J}\right) & =\left(L^{*} \omega_{I}\right)\left(f_{j_{1}}, \ldots, f_{j_{k}}\right) \\
& =\omega_{I}\left(L f_{j_{1}}, \ldots, L f_{j_{k}}\right) \\
& =\omega_{I}\left(A f_{j_{1}}, \ldots, A f_{j_{k}}\right) \\
& \left.=\sum_{\sigma \in S_{k}}(-1)^{\sigma}\left(\varphi_{I} \circ \sigma^{*}\right)\left(A f_{j_{1}}, \ldots, A f_{j_{k}}\right) \quad \text { (Definition of } \omega_{I}\right) \\
& =\sum_{\sigma \in S_{k}}(-1)^{\sigma} \varphi_{I}\left(A f_{j_{\sigma(1)}}, \ldots, A f_{j_{\sigma(k)}}\right) \\
& =\sum_{\sigma \in S_{k}}(-1)^{\sigma} \varphi_{I}\left(\sum_{i=1}^{n} a_{i, j_{\sigma(1)}} e_{i}, \ldots, \sum_{i=1}^{n} a_{i, j_{\sigma(k)}} e_{i}\right) \\
& =\sum_{\sigma \in S_{k}}(-1)^{\sigma} \varphi_{i_{1}}\left(\sum_{i=1}^{n} a_{i, j_{\sigma(1)}} e_{i}\right) \varphi_{i_{2}}\left(\sum_{i=1}^{n} a_{i, j_{\sigma(2)}} e_{i}\right) \cdots \varphi_{i_{k}}\left(\sum_{i=1}^{n} a_{i, j_{\sigma(k)}} e_{i}\right) \\
& =\sum_{\sigma \in S_{k}}(-1)^{\sigma} a_{i_{1}, j_{\sigma(1)}} a_{i_{2}, j_{\sigma(2)}} \cdots a_{i_{k}, j_{\sigma(k)}} \\
& =\sum_{\sigma \in S_{k}}(-1)^{\sigma}\left(A_{I, J}\right)_{1, \sigma(1)}\left(A_{I, J}\right)_{2, \sigma(2)} \cdots\left(A_{I, J}\right)_{k, \sigma(k)} \\
& =\operatorname{det}\left(A_{I, J}\right),
\end{aligned}
$$

where $\left(A_{I, J}\right)_{r, c}$ denotes the entry in the $r^{\text {th }}$ row and $c^{\text {th }}$ column of $A_{I, J}$.
We also showed in lecture that, for all $J_{1}, J_{2} \in \underline{m}_{a}^{k}$, we have $\omega_{J_{1}}\left(v_{J_{2}}\right)=1$ if $J_{1}=J_{2}$ and $\omega_{J_{1}}\left(v_{J_{2}}\right)=0$ otherwise. Then, we can evaluate $\left(\sum_{J^{\prime} \in \underline{m}_{a}^{k}} \operatorname{det}\left(A_{I, J^{\prime}}\right) \omega_{J^{\prime}}\right)\left(v_{J}\right)$ as follows:

$$
\begin{aligned}
\left(\sum_{J^{\prime} \in \underline{m}_{a}^{k}} \operatorname{det}\left(A_{I, J^{\prime}}\right) \omega_{J^{\prime}}\right)\left(v_{J}\right) & =\sum_{J^{\prime} \in \underline{m}_{a}^{k}} \operatorname{det}\left(A_{I, J^{\prime}}\right) \omega_{J^{\prime}}\left(v_{J}\right) \\
& =\operatorname{det}\left(A_{I, J}\right) \omega_{J}\left(v_{J}\right)+\sum_{\substack{J^{\prime} \in \boldsymbol{m}_{a}^{k} \\
J^{\prime} \neq J}} \operatorname{det}\left(A_{I, J^{\prime}}\right) \omega_{J^{\prime}}\left(v_{J}\right) \\
& =\operatorname{det}\left(A_{I, J}\right)+0 \\
& =\operatorname{det}\left(A_{I, J}\right) \\
& =\left(L^{*} \omega_{I}\right)\left(v_{J}\right)
\end{aligned}
$$

Therefore, since $\left(\sum_{J^{\prime} \in \underline{m}_{a}^{k}} \operatorname{det}\left(A_{I, J^{\prime}}\right) \omega_{J^{\prime}}\right)\left(v_{J}\right)=\left(L^{*} \omega_{I}\right)\left(v_{J}\right)$ for all $J \in \underline{m}_{a}^{k}$, we conclude that $L^{*} \omega_{I}=\sum_{J \in \underline{m}_{a}^{k}} \operatorname{det}\left(A_{I, J}^{-a}\right) \omega_{J}$. In other words, we have written $L^{*} \omega_{I}$ as a linear combination $\sum_{J \in \underline{m}_{a}^{k}} c_{J} \omega_{J}$ with coefficients $c_{J}=\operatorname{det}\left(A_{I, J}\right)$, as required.
4. We will develop a theory of symmetric tensors. First, let V be an n-dimensional vector space, and let k be any positive integer. Then, we define a symmetric k-tensor on V to be a k-tensor on V whose outputs are unchanged if the arguments are permuted. Formally, we define a k-tensor T on V to be symmetric if we have:

$$
T\left(v_{1}, \ldots, v_{k}\right)=T\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)
$$

for all arguments $v_{1}, \ldots, v_{k} \in V$ and all permutations $\sigma \in S_{k}$.
Finally, let us define $S^{k}(V)$ to be the set of all symmetric k-tensors on V.
Now, we will show that $S^{k}(V)$ is a vector subspace of $\mathcal{T}^{k}(V)$. First, $S^{k}(V)$ is nonempty because it contains the zero tensor. Indeed, if we pick $T_{0} \in \mathcal{T}^{k}(V)$ defined by $T_{0}\left(v_{1}, \ldots, v_{k}\right)=0$, then we obtain:

$$
T_{0}\left(v_{1}, \ldots, v_{k}\right)=0=T_{0}\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)
$$

for all $v_{1}, \ldots, v_{k} \in V$ and all $\sigma \in S_{k}$, which shows that $T_{0} \in S^{k}(V)$. Next, to show that $S^{k}(V)$ is closed under addition and scalar multiplication, it suffices to show that $\lambda S+T \in S^{k}(V)$ for all $S, T \in S^{k}(V)$ and all $\lambda \in \mathbb{R}$. Indeed, for all $v_{1}, \ldots, v_{k} \in V$ and all $\sigma \in S_{k}$, we have:

$$
\begin{aligned}
& (\lambda S+T)\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \\
= & \lambda S\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)+T\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \\
= & \lambda S\left(v_{1}, \ldots, v_{k}\right)+T\left(v_{1}, \ldots, v_{k}\right) \quad \text { (Since } S, T \text { are symmetric) } \\
= & (\lambda S+T)\left(v_{1}, \ldots, v_{k}\right) .
\end{aligned}
$$

Since $(\lambda S+T)\left(v_{1}, \ldots, v_{k}\right)=(\lambda S+T)\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)$, we find that $\lambda S+T$ is also symmetric, so $S^{k}(V)$ is closed under addition and scalar multiplication. Thus, since $S^{k}(V)$ is nonempty and closed under addition and scalar multiplication, $S^{k}(V)$ is a vector subspace of $\mathcal{T}^{k}(V)$, as required. Next, we will construct a basis for $S^{k}(V)$. To begin, let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis for V, and let $\left\{\varphi_{I}: I \in \underline{n}^{k}\right\}$ be the corresponding basis for $\mathcal{T}^{k}(V)$. Also, let us define $\underline{n}_{n d}^{k}$ to be the set of all non-decreasing sequences of length k with elements in $\{1, \ldots, n\}$, as was done in lecture. Then, for all $I \in \underline{n}_{n d}^{k}$, let us define the tensor $\sigma_{I} \in \mathcal{T}^{k}(V)$ by:

$$
\sigma_{I}:=\sum_{\sigma \in S_{k}} \varphi_{I} \circ \sigma^{*} .
$$

Then, for all $I \in \underline{n}_{n d}^{k}$, we will prove that σ_{I} is symmetric.
First, permuting arguments of σ_{I} is equivalent to composing σ_{I} with τ^{*}, where $\tau \in S_{k}$ is a permutation. Then, to prove that the outputs of σ_{I} are unchanged if its arguments are permuted, we need to prove that $\sigma_{I}=\sigma_{I} \circ \tau^{*}$ for all permutations τ :

$$
\begin{aligned}
\sigma_{I} \circ \tau^{*} & \left.=\left(\sum_{\sigma \in S_{k}} \varphi_{I} \circ \sigma^{*}\right) \circ \tau^{*} \quad \text { (Definition of } \sigma_{I}\right) \\
& =\sum_{\sigma \in S_{k}}\left(\varphi_{I} \circ \sigma^{*} \circ \tau^{*}\right) \\
& =\sum_{\sigma \in S_{k}}\left(\varphi_{I} \circ(\tau \circ \sigma)^{*}\right)
\end{aligned}
$$

In this summation, we claim that $\tau \circ \sigma$ takes on the value of every permutation in S_{k} exactly once as σ ranges over all permutations in S_{k}. Indeed, for all $\sigma^{\prime} \in S_{k}$, we claim that $\tau \circ \sigma=\sigma^{\prime}$ if and
only if $\sigma=\tau^{-1} \circ \sigma^{\prime}$. For the " \Rightarrow " direction, if $\tau \circ \sigma=\sigma^{\prime}$, then we can apply τ^{-1} to both sides to obtain $\tau^{-1} \circ \tau \circ \sigma=\tau^{-1} \circ \sigma^{\prime}$, so $\sigma=\tau^{-1} \circ \sigma^{\prime}$. For the " \Leftarrow " direction, if $\sigma=\tau^{-1} \circ \sigma^{\prime}$, then we can compute $\tau \circ \sigma=\tau \circ \tau^{-1} \circ \sigma^{\prime}=\sigma^{\prime}$. Thus, $\tau \circ \sigma=\sigma^{\prime}$ if and only if σ equals the permutation $\tau^{-1} \circ \sigma^{\prime}$, so $\tau \circ \sigma$ equals every permutation in S_{k} exactly once as σ ranges over all permutations in S_{k}, as desired. Then, the above summation can be evaluated as:

$$
\begin{aligned}
\sigma_{I} \circ \tau^{*} & =\sum_{\sigma \in S_{k}}\left(\varphi_{I} \circ(\tau \circ \sigma)^{*}\right) \\
& =\sum_{\sigma^{\prime} \in S_{k}}\left(\varphi_{I} \circ \sigma^{\prime}\right) \\
& =\sigma_{I} .
\end{aligned}
$$

Therefore, $\sigma_{I}=\sigma_{I} \circ \tau^{*}$ for all permutations τ, so $\sigma_{I} \in S^{k}(V)$, as required.
Next, we will prove that:

$$
\left\{\sigma_{I}: I \in \underline{n}_{n d}^{k}\right\}
$$

is a basis for $S^{k}(V)$. We will do this using the four following steps:
Step 1: For all $I=\left(i_{1}, \ldots, i_{k}\right), J=\left(j_{1}, \ldots, j_{k}\right) \in \underline{n}_{n d}^{k}$, we will prove that $\sigma_{I}\left(v_{J}\right)>0$ if $I=J$ and $\sigma_{I}\left(v_{J}\right)=0$ otherwise.
First, suppose that $I=J$. Then, we obtain:

$$
\begin{aligned}
\sigma_{I}\left(v_{J}\right) & =\sum_{\sigma \in S_{k}} \varphi_{I}\left(\sigma^{*}\left(v_{J}\right)\right) \\
& =\varphi_{I}\left(\mathrm{id}^{*}\left(v_{J}\right)\right)+\sum_{\substack{\sigma \in S_{k} \\
\sigma \neq \mathrm{id}}} \varphi_{I}\left(\sigma^{*}\left(v_{J}\right)\right) \quad \text { (Where id denotes the identity permutation) } \\
& =\varphi_{I}\left(e_{j_{\mathrm{id}(1)}}, \ldots, e_{j_{\mathrm{id}(1)}}\right)+\sum_{\substack{\sigma \in S_{k} \\
\sigma \neq \mathrm{id}}} \varphi_{I}\left(e_{j_{\sigma(1)}}, \ldots, e_{j_{\sigma(k)}}\right) \\
& =\varphi_{I}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)+\sum_{\substack{\sigma \in S_{k} \\
\sigma \neq \mathrm{id}}} \varphi_{I}\left(e_{j_{\sigma(1)}}, \ldots, e_{j_{\sigma(k)}}\right) \\
& =\varphi_{I}\left(e_{J}\right)+\sum_{\substack{\sigma \in S_{k} \\
\sigma \neq \mathrm{id}}} \varphi_{I}\left(e_{j_{\sigma(1)}}, \ldots, e_{j_{\sigma(k)}}\right)
\end{aligned}
$$

Since $I=J$, we have $\varphi_{I}\left(e_{J}\right)=1$. Moreover, for all $\sigma \in S_{k}$ such that $\sigma \neq \mathrm{id}$, we have $\varphi_{I}\left(e_{j_{\sigma(1)}}, \ldots, e_{j_{\sigma(k)}}\right)=1$ if $I=\left(j_{\sigma(1)}, \ldots, j_{\sigma(k)}\right)$, and $\varphi_{I}\left(e_{j_{\sigma(1)}}, \ldots, e_{j_{\sigma(k)}}\right)=0$ otherwise. Either way, $\varphi_{I}\left(e_{j_{\sigma(1)}}, \ldots, e_{j_{\sigma(k)}}\right)$ is nonnegative. Thus, the entire summation is at least 1 , so $\sigma_{I}\left(v_{J}\right)>0$ if $I=J$, as desired.
Next, suppose that $I \neq J$. Then, we obtain:

$$
\begin{aligned}
\sigma_{I}\left(v_{J}\right) & =\sum_{\sigma \in S_{k}} \varphi_{I}\left(\sigma^{*}\left(v_{J}\right)\right) \\
& =\sum_{\sigma \in S_{k}} \varphi_{I}\left(e_{j_{\sigma(1)}}, \ldots, e_{j_{\sigma(k)}}\right)
\end{aligned}
$$

For each $\sigma \in S_{k}$, we have the following two cases: $\left(j_{\sigma(1)}, \ldots, j_{\sigma(k)}\right)$ is non-decreasing, or it is not non-decreasing. If $\left(j_{\sigma(1)}, \ldots, j_{\sigma(k)}\right)$ is non-decreasing, then it equals J, so it does not equal I
since $I \neq J$. Otherwise, if $\left(j_{\sigma(1)}, \ldots, j_{\sigma(k)}\right)$ is not non-decreasing, then it does not equal I since I is non-decreasing. Either way, $\left(j_{\sigma(1)}, \ldots, j_{\sigma(k)}\right) \neq I$, so $\varphi_{I}\left(e_{j_{\sigma(1)}}, \ldots, e_{j_{\sigma(k)}}\right)=0$. Since this is true for all $\sigma \in S_{k}$, we obtain:

$$
\sigma_{I}\left(v_{J}\right)=\sum_{\sigma \in S_{k}} \varphi_{I}\left(e_{j_{\sigma(1)}}, \ldots, e_{j_{\sigma(k)}}\right)=\sum_{\sigma \in S_{k}} 0=0,
$$

as desired.
Step 2: For all $S, T \in S^{k}(V)$, we will prove that $S=T$ if and only if, for all $I \in \underline{n}_{n d}^{k}$, we have $S\left(v_{I}\right)=T\left(v_{I}\right)$.
The " \Rightarrow " direction is clear. For the " \Leftarrow " direction, suppose that $S\left(v_{I}\right)=T\left(v_{I}\right)$ for all $I \in \underline{n}_{n d}^{k}$. First, we will show that $S\left(v_{J}\right)=T\left(v_{J}\right)$ for all $J \in \underline{n}^{k}$. Given $J=\left(j_{1}, \ldots, j_{k}\right) \in \underline{n}^{k}$, it is possible to sort the elements of J into non-decreasing order using some permutation $\sigma \in S_{k}$ to form a sequence $\left(j_{\sigma(1)}, \ldots, j_{\sigma(k)}\right) \in \underline{n}_{n d}^{k}$. Then, we obtain:

$$
\begin{aligned}
S\left(v_{J}\right) & =S\left(e_{j_{\sigma(1)}}, \ldots, e_{j_{\sigma(k)}}\right) \quad(\text { Since } S \text { is symmetric) } \\
& =T\left(e_{j_{\sigma(1)}}, \ldots, e_{j_{\sigma(k)}}\right) \quad\left(\text { Since }\left(j_{\sigma(1)}, \ldots, j_{\sigma(k)}\right) \in \underline{n}_{n d}^{k}\right) \\
& =T\left(v_{J}\right) . \quad(\text { Since } S \text { is symmetric })
\end{aligned}
$$

Thus, $S\left(v_{J}\right)=T\left(v_{J}\right)$ for all $J \in \underline{n}^{k}$.
Next, for all $\left(v_{1}, \ldots, v_{k}\right) \in V^{k}$, we can write each v_{i} in the form $v_{i}=\sum_{j_{i}=1}^{n} a_{i, j_{i}} e_{j_{i}}$, where $a_{i, j_{i}}$ are real coefficients. Then, we obtain:

$$
\begin{aligned}
S\left(v_{1}, \ldots, v_{k}\right) & =S\left(\sum_{j_{1}=1}^{n} a_{1, j_{1}} e_{j_{1}}, \sum_{j_{2}=1}^{n} a_{2, j_{2}} e_{j_{2}}, \ldots, \sum_{j_{k}=1}^{n} a_{k, j_{k}} e_{j_{k}}\right) \\
& =\sum_{j_{1}=1}^{n} a_{1, j_{1}} S\left(e_{j_{1}}, \sum_{j_{2}=1}^{n} a_{2, j_{2}} e_{j_{2}}, \ldots, \sum_{j_{k}=1}^{n} a_{k, j_{k}} e_{j_{k}}\right) \quad \text { (Since } S \text { is } k \text {-linear) } \\
& =\cdots \\
& =\sum_{j_{1}=1}^{n} a_{1, j_{1}} \sum_{j_{2}=1}^{n} a_{2, j_{2}} \cdots \sum_{j_{k}=1}^{n} a_{k, j_{k}} S\left(e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{k}}\right) \\
& =\sum_{j_{1}=1}^{n} a_{1, j_{1}} \cdots \sum_{j_{k}=1}^{n} a_{k, j_{k}} S\left(v_{\left(j_{1}, \ldots, j_{k}\right)}\right) \\
& =\sum_{j_{1}=1}^{n} a_{1, j_{1}} \cdots \sum_{j_{k}=1}^{n} a_{k, j_{k}} T\left(v_{\left(j_{1}, \ldots, j_{k}\right)}\right) \quad \quad\left(\text { Since } S\left(v_{J}\right)=T\left(v_{J}\right) \text { for all } J \in \underline{n}^{k}\right) \\
& =\sum_{j_{1}=1}^{n} a_{1, j_{1}} \cdots \sum_{j_{k}=1}^{n} a_{k, j_{k}} T\left(e_{j_{1}}, \ldots, e_{j_{k}}\right) \\
& =\cdots \\
& =T\left(\sum_{j_{1}=1}^{n} a_{1, j_{1}} e_{j_{1}}, \ldots, \sum_{j_{k}=1}^{n} a_{k, j_{k}} e_{j_{k}}\right) \\
& =T\left(v_{1}, \ldots, v_{k}\right) .
\end{aligned}
$$

Therefore, $S\left(v_{1}, \ldots, v_{k}\right)=T\left(v_{1}, \ldots, v_{k}\right)$ for all $v_{1}, \ldots, v_{k} \in V$, so $S=T$. This concludes our proof that $S=T$ if and only if $S\left(v_{I}\right)=T\left(v_{I}\right)$ for all $I \in \underline{n}_{n d}^{k}$, as desired.

Step 3: We will prove that $\left\{\sigma_{I}: I \in \underline{n}_{n d}^{k}\right\}$ spans $S^{k}(V)$.
Let T be any element of $S^{k}(V)$. For all $I \in \underline{n}_{n d}^{k}$, let us define the real coefficient $c_{I}:=\frac{T\left(v_{I}\right)}{\sigma_{I}\left(v_{I}\right)}$; we can divide by $\sigma_{I}\left(v_{I}\right)$ because we proved in Step 1 that $\sigma_{I}\left(v_{I}\right)>0$. Then, we claim that $T=\sum_{I \in \underline{n}_{n d}^{k}} c_{I} \sigma_{I}$. Indeed, for all $J \in \underline{n}_{n d}^{k}$, we have:

$$
\begin{aligned}
\left(\sum_{I \in n_{n d}^{k}} c_{I} \sigma_{I}\right)\left(v_{J}\right) & =\sum_{I \in n_{n d}^{k}} c_{I} \sigma_{I}\left(v_{J}\right) \\
& =c_{J} \sigma_{J}\left(v_{J}\right) \quad\left(\text { Since } \sigma_{I}\left(v_{J}\right)=0 \text { if } I \neq J\right) \\
& \left.=\frac{T\left(v_{J}\right)}{\sigma_{J}\left(v_{J}\right)} \cdot \sigma_{J}\left(v_{J}\right) \quad \text { (Definition of } c_{J}\right) \\
& =T\left(v_{J}\right) .
\end{aligned}
$$

Since $\left(\sum_{I \in \underline{n}_{n d}^{k}} c_{I} \sigma_{I}\right)\left(v_{J}\right)=T\left(v_{J}\right)$ for all $J \in \underline{n}_{n d}^{k}$, it follows from Step 2 that $\sum_{I \in \underline{n}_{n d}^{k}} c_{I} \sigma_{I}=T$. Thus, we have expressed T as a linear combination of elements from $\left\{\sigma_{I}: I \in \underline{n}_{n d}^{k}\right\}$. Since this is possible for all $T \in S^{k}(V)$, we conclude that $\left\{\sigma_{I}: I \in \underline{n}_{n d}^{k}\right\}$ spans $S^{k}(V)$, as desired.
Step 4: We will prove that $\left\{\sigma_{I}: I \in \underline{n}_{n d}^{k}\right\}$ is linearly independent.
Suppose that we have real coefficients c_{I} for all $I \in \underline{n}_{n d}^{k}$ such that $\sum_{I \in \underline{n}_{n d}^{k}} c_{I} \sigma_{I}=0$. Then, for all $J \in \underline{n}_{n d}^{k}$, we obtain:

$$
\begin{aligned}
\left(\sum_{I \in \underline{n}_{n d}^{k}} c_{I} \sigma_{I}\right)\left(v_{J}\right) & =0 \\
\sum_{I \in \underline{n}_{n d}^{k}} c_{I} \sigma_{I}\left(v_{J}\right) & =0
\end{aligned}
$$

Applying Step 1 , we have $\sigma_{I}\left(v_{J}\right)>1$ if $I=J$ and $\sigma_{I}\left(v_{J}\right)=0$ otherwise, so the above summation equals $c_{J} \cdot \sigma_{J}\left(v_{J}\right)$. As a result, $c_{J} \cdot \sigma_{J}\left(v_{J}\right)=0$, so $c_{J}=\frac{0}{\sigma_{J}\left(v_{J}\right)}=0$ for all $J \in \underline{n}_{n d}^{k}$. Then, since the coefficients c_{I} must all equal zero whenever $\sum_{I \in \underline{n}_{n d}^{k}} c_{I} \sigma_{I}=0$, we conclude that $\left\{\sigma_{I}: I \in \underline{n}_{n d}^{k}\right\}$ is linearly independent, as desired.
Overall, since $\left\{\sigma_{I}: I \in \underline{n}_{n d}^{k}\right\}$ spans $S^{k}(V)$ and is linearly independent, we conclude that it is a basis for $S^{k}(V)$, as required.
Finally, the number of elements in this basis equals the number of sequences I in $\underline{n}_{n d}^{k}$. In lecture, we proved that $\underline{n}_{n d}^{k}$ has $\binom{n+k-1}{k}$ elements. Therefore, the dimension of $S^{k}(V)$ is $\binom{n+k-1}{k}$, as required.

Notes on intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions. (Note: This section was not submitted for grading.)

1. Our first task is to show that f is not alternating by constructing an example of $(u, v) \in \mathbb{R}^{4} \times \mathbb{R}^{4}$ such that $f(u, v) \neq-f(v, u)$. To construct (u, v), the main idea is to find a term in $f(x, y)$ of the form $x_{i} y_{j}$ without a corresponding term $-x_{j} y_{i}$, then to set $u=e_{i}$ and $y=e_{j}$. In this case, $f(x, y)$ contains the term $x_{1} y_{1}$ without a corresponding $-x_{1} y_{1}$, so we set $u=v=e_{1}$. This same strategy also works to show that g is not alternating: Since $g(x, y)$ contains $x_{1} y_{3}$ without a corresponding $-x_{3} y_{1}$, we pick $u=e_{1}$ and $v=e_{3}$. Finally, the function h was a "trick question" because although h is alternating (i.e., $h(x, y)=-h(y, x)$), h is still not an alternating tensor because it is not bilinear.
2. The main idea is that $\Lambda^{n}\left(\mathbb{R}^{n}\right)$ has a dimension of 1 and only has one basic element $\omega_{I_{0}}$, where $I_{0}=(1, \ldots, n) \in \underline{n}_{a}^{n}$. Then, det is a multiple of $\omega_{I_{0}}$. After a simple computation shows that $\operatorname{det}\left(v_{I_{0}}\right)=1=\omega_{I_{0}}\left(v_{I_{0}}\right)$, this motivates our hypothesis that det $=\omega_{I_{0}}$. Then, we can use the same computation to prove our hypothesis.
3. The main idea is to find the ω_{J}-coefficient of $L^{*} \omega_{I}$ by computing $\left(L^{*} \omega_{I}\right)\left(v_{J}\right)$. Once we reach the step:

$$
\left(L^{*} \omega_{I}\right)\left(v_{J}\right)=\sum_{\sigma \in S_{k}}(-1)^{\sigma} a_{i_{1}, j_{\sigma(1)}} a_{i_{2}, j_{\sigma(2)}} \cdots a_{i_{k}, j_{\sigma(k)}}
$$

we observe that the terms $a_{i_{1}, j_{\sigma(1)}}, \ldots, a_{i_{k}, j_{\sigma(k)}}$ always comes from the same submatrix of A containing Rows i_{1}, \ldots, i_{k} and Columns j_{1}, \ldots, j_{k}. This motivates us to define $A_{I, J}$ to be this submatrix. Once we further compute that $\left(L^{*} \omega_{I}\right)\left(v_{J}\right)=\operatorname{det}\left(A_{I, J}\right)$, this motivates our hypothesis that $L^{*} \omega_{I}=\sum_{J \in \underline{m}_{a}^{k}} \operatorname{det}\left(A_{I, J}\right) \omega_{J}$. Then, we can prove our hypothesis using the same computation.
4. The main idea is to follow the same procedure that was used in lecture to develop a theory of alternating tensors - in fact, this strategy helps us to write almost all of the solution. The new tasks for our solution are to define σ_{I} and $\underline{n}_{n d}^{k}$. To motivate our definition for σ_{I}, we begin with the definition $\omega_{I}=\sum_{\sigma \in S_{k}}(-1)^{\sigma} \varphi_{I} \circ \sigma^{*}$ for basic alternating tensors, and then we remove the $(-1)^{\sigma}$ so that the tensor is symmetric instead of alternating. Next, to motivate the definition of $\underline{n}_{n d}^{k}$, we first review the motivation for the definition of \underline{n}_{a}^{k}. When constructing basic elements ω_{I} for $\Lambda^{k}(V)$, we first restricted to our attention to non-decreasing sequences I because if I were not non-decreasing, then it could be sorted into a non-decreasing sequence I^{\prime}, and we could write ω_{I} in terms of $\omega_{I^{\prime}}$. Then, we restricted our attention further to strictly increasing sequences I because if I had repeating entries, we would get $\omega_{I}=0$ because ω_{I} kills repetitions. Transitioning to symmetric tensors σ_{I}, we still need to restrict our attention to non-decreasing sequences I for the same reason as above. However, σ_{I} no longer kills repetitions, so we no longer need I to be strictly increasing. This leads us to our definition of $\underline{n}_{n d}^{k}$, as desired.

