$\begin{array}{c} \textbf{MAT257 Assignment 12 (Alternating tensors)} \\ \textbf{(Author's name here)} \end{array}$

Author's name here February 4, 2022 1. We are given the following functions from $\mathbb{R}^4 \times \mathbb{R}^4$ to \mathbb{R} :

$$f(x,y) := x_1y_2 - x_2y_1 + x_1y_1,$$
$$g(x,y) := x_1y_3 - x_3y_2,$$
$$h(x,y) := (x_1)^3(y_2)^3 - (x_2)^3(y_1)^3.$$

We will determine whether or not these functions are alternating tensors.

First, we claim that f is not an alternating tensor. Consider the vectors u = (1, 0, 0, 0) and v = (1, 0, 0, 0). Then, we can compare f(u, v) with f(v, u) as follows:

$$f(u,v) = u_1v_2 - u_2v_1 + u_1v_1 \qquad f(v,u) = v_1u_2 - v_2u_1 + v_1u_1$$

= 1 \cdot 0 - 0 \cdot 1 + 1 \cdot 1
= 1 = 1 = 1

Since $f(u, v) \neq -f(v, u)$, we conclude that f is not an alternating tensor, as required.

Next, we claim that g is not an alternating tensor. Consider the vectors u = (1, 0, 0, 0) and v = (0, 0, 1, 0). Then, we can compare g(u, v) with g(v, u) as follows:

$$g(u, v) = u_1 v_3 - u_3 v_2 \qquad g(v, u) = v_1 u_3 - v_3 u_2 = 1 \cdot 1 - 0 \cdot 0 \qquad = 0 \cdot 0 - 1 \cdot 0 = 1 \qquad = 0$$

Since $g(u, v) \neq -g(v, u)$, we conclude that g is not an alternating tensor, as required.

Next, we claim that h is not an alternating tensor because h is not bilinear. Consider the vectors u = (1, 0, 0, 0) and v = (0, 1, 0, 0). Then, we can compare h(u, v) with h(2u, v) as follows:

$$h(u, v) = (u_1)^3 (v_2)^3 - (u_2)^3 (v_1)^3 \qquad h(2u, v) = (2u_1)^3 (v_2)^3 - (2u_2)^3 (v_1)^3$$

= 1³ \cdot 1³ - 0³ \cdot 0³
= 1 = 8

Since $h(2u, v) \neq 2h(u, v)$, we conclude that h is not bilinear, so h is also not an alternating tensor, as required.

2. We are given that the determinant det : $\mathbb{R}^{n \times n} \to \mathbb{R}$, when viewed as a function of n column vectors of length n, is an alternating tensor. Then, we will write it in terms of the elementary alternating tensors ω_I , where $I \in \underline{n}^n_a$, assuming the standard basis (e_1, \ldots, e_n) of \mathbb{R}^n .

First, the only element of \underline{n}_a^n is $(1, 2, \ldots, n)$ because an increasing sequence containing n distinct elements from $\{1, \ldots, n\}$ must contain all elements from $\{1, \ldots, n\}$ in increasing order. Then, let us denote $I_0 := (1, 2, \ldots, n)$. We will show that $\det = \omega_{I_0}$.

In lecture, we proved that two alternating tensors are equal if and only if they agree on arguments of the form v_I , where $I \in \underline{n}_a^n$. Thus, it suffices to prove that $\det(v_{I_0}) = \omega_{I_0}(v_{I_0})$. We also proved in lecture that $\omega_I(v_I) = 1$ for all $I \in \underline{n}_a^n$, so $\omega_{I_0}(v_{I_0}) = 1$. Then, it suffices to prove that $\det(v_{I_0}) = 1$, which we will prove below:

$$det(v_{I_0}) = det(e_1, \dots, e_n)$$
$$= det I_n$$
$$= 1.$$

where I_n denotes the identity matrix of size n. Since $det(v_{I_0}) = 1 = \omega_{I_0}(v_{I_0})$, we conclude that $det = \omega_{I_0}$, as required.

3. We are given a linear transformation $L: \mathbb{R}^m \to \mathbb{R}^n$ represented by a matrix $A = (a_{i,j}) \in M_{n \times m}(\mathbb{R})$ relative to the standard basis (e_1,\ldots,e_n) of \mathbb{R}^n and the standard basis (f_1,\ldots,f_m) of \mathbb{R}^m . Given an elementary alternating k-tensor ω_I on \mathbb{R}^n , where $I = (i_1, \ldots, i_k) \in \underline{n}_a^k$, we will write $L^* \omega_I$ as a linear combination $\sum_{J \in \underline{m}_a^k} c_J \omega_J$ of the elementary alternating k-tensors ω_J on \mathbb{R}^m . First, let us verify that $L^*\omega_I$ is an alternating k-tensor on \mathbb{R}^m . For all $v_1, \ldots, v_k \in \mathbb{R}^m$ and all $\sigma \in S_k$, we have:

$$((L^*\omega_I) \circ \sigma^*)(v_1, \dots, v_k) = (L^*\omega_I)(v_{\sigma(1)}, \dots, v_{\sigma(k)})$$

= $\omega_I(Lv_{\sigma(1)}, \dots, Lv_{\sigma(k)})$
= $(\omega_I \circ \sigma^*)(Lv_1, \dots, Lv_k)$
= $(-1)^{\sigma}\omega_I(Lv_1, \dots, Lv_k)$ (Since ω_I is alternating)
= $(-1)^{\sigma}(L^*\omega_I)(v_1, \dots, v_k).$

Since $((L^*\omega_I) \circ \sigma^*)(v_1, \ldots, v_k) = (-1)^{\sigma} (L^*\omega_I)(v_1, \ldots, v_k)$ for all $v_1, \ldots, v_k \in \mathbb{R}^m$ and all $\sigma \in S_k$, we conclude that $L^*\omega_I$ is alternating, as desired.

Next, for all $J = (j_1, \ldots, j_k) \in \underline{m}_a^k$, let us define the matrix $A_{I,J}$ as follows:

$$A_{I,J} := \begin{pmatrix} a_{i_1,j_1} & a_{i_1,j_2} & \cdots & a_{i_1,j_k} \\ a_{i_2,j_1} & a_{i_2,j_2} & \cdots & a_{i_2,j_k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i_k,j_1} & a_{i_k,j_2} & \cdots & a_{i_k,j_k} \end{pmatrix}.$$

Then, we will prove that $L^*\omega_I = \sum_{J \in \underline{m}_a^k} \det(A_{I,J})\omega_J$. First, we proved in lecture that two alternating tensors on \mathbb{R}^m are equal if and only if they agree on arguments of the form $v_J \in (\mathbb{R}^m)^k$, where $J \in \underline{m}_a^k$. Then, to prove that $L^*\omega_I$ equals $\sum_{J \in \underline{m}_a^k} \det(A_{I,J}) \omega_J, \text{ it suffices to show that } (L^* \omega_I)(v_J) = (\sum_{J' \in \underline{m}_a^k} \det(A_{I,J'}) \omega_{J'})(v_J) \text{ for all } (L^* \omega_I)(v_J) = (\sum_{J' \in \underline{m}_a^k} \det(A_{I,J'}) \omega_{J'})(v_J) \text{ for all } (L^* \omega_I)(v_J) = (\sum_{J' \in \underline{m}_a^k} \det(A_{I,J'}) \omega_{J'})(v_J) \text{ for all } (L^* \omega_I)(v_J) = (\sum_{J' \in \underline{m}_a^k} \det(A_{I,J'}) \omega_{J'})(v_J) \text{ for all } (L^* \omega_I)(v_J) = (\sum_{J' \in \underline{m}_a^k} \det(A_{I,J'}) \omega_{J'})(v_J) \text{ for all } (L^* \omega_I)(v_J) = (\sum_{J' \in \underline{m}_a^k} \det(A_{I,J'}) \omega_{J'})(v_J) \text{ for all } (L^* \omega_I)(v_J) \text{ for } ($ $J = (j_1, \ldots, j_k) \in \underline{m}_a^k$. First, we can evaluate $(L^* \omega_I)(v_J)$ as follows:

$$\begin{split} (L^*\omega_I)(v_J) &= (L^*\omega_I)(f_{j_1}, \dots, f_{j_k}) \\ &= \omega_I(Lf_{j_1}, \dots, Lf_{j_k}) \\ &= \omega_I(Af_{j_1}, \dots, Af_{j_k}) \\ &= \sum_{\sigma \in S_k} (-1)^{\sigma} (\varphi_I \circ \sigma^*)(Af_{j_1}, \dots, Af_{j_k}) \quad \text{(Definition of } \omega_I) \\ &= \sum_{\sigma \in S_k} (-1)^{\sigma} \varphi_I(Af_{j_{\sigma(1)}}, \dots, Af_{j_{\sigma(k)}}) \\ &= \sum_{\sigma \in S_k} (-1)^{\sigma} \varphi_I(\sum_{i=1}^n a_{i,j_{\sigma(1)}}e_i) \cdots \sum_{i=1}^n a_{i,j_{\sigma(k)}}e_i) \\ &= \sum_{\sigma \in S_k} (-1)^{\sigma} \varphi_{i_1}(\sum_{i=1}^n a_{i,j_{\sigma(1)}}e_i) \varphi_{i_2}(\sum_{i=1}^n a_{i,j_{\sigma(2)}}e_i) \cdots \varphi_{i_k}(\sum_{i=1}^n a_{i,j_{\sigma(k)}}e_i) \\ &= \sum_{\sigma \in S_k} (-1)^{\sigma} a_{i_1,j_{\sigma(1)}}a_{i_2,j_{\sigma(2)}} \cdots a_{i_k,j_{\sigma(k)}} \\ &= \sum_{\sigma \in S_k} (-1)^{\sigma} (A_{I,J})_{1,\sigma(1)}(A_{I,J})_{2,\sigma(2)} \cdots (A_{I,J})_{k,\sigma(k)} \\ &= \det(A_{I,J}), \end{split}$$

where $(A_{I,J})_{r,c}$ denotes the entry in the r^{th} row and c^{th} column of $A_{I,J}$. We also showed in lecture that, for all $J_1, J_2 \in \underline{m}_a^k$, we have $\omega_{J_1}(v_{J_2}) = 1$ if $J_1 = J_2$ and $\omega_{J_1}(v_{J_2}) = 0$ otherwise. Then, we can evaluate $(\sum_{J' \in \underline{m}_a^k} \det(A_{I,J'})\omega_{J'})(v_J)$ as follows:

$$\begin{split} (\sum_{J'\in\underline{m}_a^k} \det(A_{I,J'})\omega_{J'})(v_J) &= \sum_{J'\in\underline{m}_a^k} \det(A_{I,J'})\omega_{J'}(v_J) \\ &= \det(A_{I,J})\omega_J(v_J) + \sum_{\substack{J'\in\underline{m}_a^k\\J'\neq J}} \det(A_{I,J'})\omega_{J'}(v_J) \\ &= \det(A_{I,J}) + 0 \\ &= \det(A_{I,J}) \\ &= (L^*\omega_I)(v_J). \end{split}$$

Therefore, since $(\sum_{J'\in\underline{m}_a^k} \det(A_{I,J'})\omega_{J'})(v_J) = (L^*\omega_I)(v_J)$ for all $J \in \underline{m}_a^k$, we conclude that $L^*\omega_I = \sum_{J\in\underline{m}_a^k} \det(A_{I,J})\omega_J$. In other words, we have written $L^*\omega_I$ as a linear combination $\sum_{J\in\underline{m}_a^k} c_J\omega_J$ with coefficients $c_J = \det(A_{I,J})$, as required.

4. We will develop a theory of symmetric tensors. First, let V be an n-dimensional vector space, and let k be any positive integer. Then, we define a symmetric k-tensor on V to be a k-tensor on V whose outputs are unchanged if the arguments are permuted. Formally, we define a k-tensor T on V to be symmetric if we have:

$$T(v_1,\ldots,v_k) = T(v_{\sigma(1)},\ldots,v_{\sigma(k)})$$

for all arguments $v_1, \ldots, v_k \in V$ and all permutations $\sigma \in S_k$. Finally, let us define $S^k(V)$ to be the set of all symmetric k-tensors on V. Now, we will show that $S^k(V)$ is a vector subspace of $\mathcal{T}^k(V)$. First, $S^k(V)$ is nonempty because it contains the zero tensor. Indeed, if we pick $T_0 \in \mathcal{T}^k(V)$ defined by $T_0(v_1, \ldots, v_k) = 0$, then we obtain:

$$T_0(v_1, \ldots, v_k) = 0 = T_0(v_{\sigma(1)}, \ldots, v_{\sigma(k)})$$

for all $v_1, \ldots, v_k \in V$ and all $\sigma \in S_k$, which shows that $T_0 \in S^k(V)$. Next, to show that $S^k(V)$ is closed under addition and scalar multiplication, it suffices to show that $\lambda S + T \in S^k(V)$ for all $S, T \in S^k(V)$ and all $\lambda \in \mathbb{R}$. Indeed, for all $v_1, \ldots, v_k \in V$ and all $\sigma \in S_k$, we have:

$$\begin{aligned} &(\lambda S + T)(v_{\sigma(1)}, \dots, v_{\sigma(k)}) \\ &= \lambda S(v_{\sigma(1)}, \dots, v_{\sigma(k)}) + T(v_{\sigma(1)}, \dots, v_{\sigma(k)}) \\ &= \lambda S(v_1, \dots, v_k) + T(v_1, \dots, v_k) \qquad \text{(Since } S, T \text{ are symmetric)} \\ &= (\lambda S + T)(v_1, \dots, v_k). \end{aligned}$$

Since $(\lambda S + T)(v_1, \ldots, v_k) = (\lambda S + T)(v_{\sigma(1)}, \ldots, v_{\sigma(k)})$, we find that $\lambda S + T$ is also symmetric, so $S^k(V)$ is closed under addition and scalar multiplication. Thus, since $S^k(V)$ is nonempty and closed under addition and scalar multiplication, $S^k(V)$ is a vector subspace of $\mathcal{T}^k(V)$, as required. Next, we will construct a basis for $S^k(V)$. To begin, let (e_1, \ldots, e_n) be a basis for V, and let $\{\varphi_I : I \in \underline{n}^k\}$ be the corresponding basis for $\mathcal{T}^k(V)$. Also, let us define \underline{n}_{nd}^k to be the set of all non-decreasing sequences of length k with elements in $\{1, \ldots, n\}$, as was done in lecture. Then, for all $I \in \underline{n}_{nd}^k$, let us define the tensor $\sigma_I \in \mathcal{T}^k(V)$ by:

$$\sigma_I := \sum_{\sigma \in S_k} \varphi_I \circ \sigma^*$$

Then, for all $I \in \underline{n}_{nd}^k$, we will prove that σ_I is symmetric.

First, permuting arguments of σ_I is equivalent to composing σ_I with τ^* , where $\tau \in S_k$ is a permutation. Then, to prove that the outputs of σ_I are unchanged if its arguments are permuted, we need to prove that $\sigma_I = \sigma_I \circ \tau^*$ for all permutations τ :

$$\sigma_{I} \circ \tau^{*} = \left(\sum_{\sigma \in S_{k}} \varphi_{I} \circ \sigma^{*}\right) \circ \tau^{*} \qquad \text{(Definition of } \sigma_{I}\text{)}$$
$$= \sum_{\sigma \in S_{k}} (\varphi_{I} \circ \sigma^{*} \circ \tau^{*})$$
$$= \sum_{\sigma \in S_{k}} (\varphi_{I} \circ (\tau \circ \sigma)^{*})$$

In this summation, we claim that $\tau \circ \sigma$ takes on the value of every permutation in S_k exactly once as σ ranges over all permutations in S_k . Indeed, for all $\sigma' \in S_k$, we claim that $\tau \circ \sigma = \sigma'$ if and only if $\sigma = \tau^{-1} \circ \sigma'$. For the " \Rightarrow " direction, if $\tau \circ \sigma = \sigma'$, then we can apply τ^{-1} to both sides to obtain $\tau^{-1} \circ \tau \circ \sigma = \tau^{-1} \circ \sigma'$, so $\sigma = \tau^{-1} \circ \sigma'$. For the " \Leftarrow " direction, if $\sigma = \tau^{-1} \circ \sigma'$, then we can compute $\tau \circ \sigma = \tau \circ \tau^{-1} \circ \sigma' = \sigma'$. Thus, $\tau \circ \sigma = \sigma'$ if and only if σ equals the permutation $\tau^{-1} \circ \sigma'$, so $\tau \circ \sigma$ equals every permutation in S_k exactly once as σ ranges over all permutations in S_k , as desired. Then, the above summation can be evaluated as:

$$\sigma_{I} \circ \tau^{*} = \sum_{\sigma \in S_{k}} (\varphi_{I} \circ (\tau \circ \sigma)^{*})$$
$$= \sum_{\sigma' \in S_{k}} (\varphi_{I} \circ \sigma')$$
$$= \sigma_{I}.$$

Therefore, $\sigma_I = \sigma_I \circ \tau^*$ for all permutations τ , so $\sigma_I \in S^k(V)$, as required. Next, we will prove that:

$$\{\sigma_I : I \in \underline{n}_{nd}^k\}$$

is a basis for $S^k(V)$. We will do this using the four following steps: **Step 1**: For all $I = (i_1, \ldots, i_k), J = (j_1, \ldots, j_k) \in \underline{n}_{nd}^k$, we will prove that $\sigma_I(v_J) > 0$ if I = J and $\sigma_I(v_J) = 0$ otherwise.

First, suppose that I = J. Then, we obtain:

$$\begin{split} \sigma_{I}(v_{J}) &= \sum_{\sigma \in S_{k}} \varphi_{I}(\sigma^{*}(v_{J})) \\ &= \varphi_{I}(\mathrm{id}^{*}(v_{J})) + \sum_{\substack{\sigma \in S_{k} \\ \sigma \neq \mathrm{id}}} \varphi_{I}(\sigma^{*}(v_{J})) \quad \text{(Where id denotes the identity permutation)} \\ &= \varphi_{I}(e_{j_{\mathrm{id}(1)}}, \dots, e_{j_{\mathrm{id}(1)}}) + \sum_{\substack{\sigma \in S_{k} \\ \sigma \neq \mathrm{id}}} \varphi_{I}(e_{j_{\sigma(1)}}, \dots, e_{j_{\sigma(k)}}) \\ &= \varphi_{I}(e_{j_{1}}, \dots, e_{j_{k}}) + \sum_{\substack{\sigma \in S_{k} \\ \sigma \neq \mathrm{id}}} \varphi_{I}(e_{j_{\sigma(1)}}, \dots, e_{j_{\sigma(k)}}) \\ &= \varphi_{I}(e_{J}) + \sum_{\substack{\sigma \in S_{k} \\ \sigma \neq \mathrm{id}}} \varphi_{I}(e_{j_{\sigma(1)}}, \dots, e_{j_{\sigma(k)}}). \end{split}$$

Since I = J, we have $\varphi_I(e_J) = 1$. Moreover, for all $\sigma \in S_k$ such that $\sigma \neq id$, we have $\varphi_I(e_{j_{\sigma(1)}}, \ldots, e_{j_{\sigma(k)}}) = 1$ if $I = (j_{\sigma(1)}, \ldots, j_{\sigma(k)})$, and $\varphi_I(e_{j_{\sigma(1)}}, \ldots, e_{j_{\sigma(k)}}) = 0$ otherwise. Either way, $\varphi_I(e_{j_{\sigma(1)}}, \ldots, e_{j_{\sigma(k)}})$ is nonnegative. Thus, the entire summation is at least 1, so $\sigma_I(v_J) > 0$ if I = J, as desired.

Next, suppose that $I \neq J$. Then, we obtain:

$$\sigma_I(v_J) = \sum_{\sigma \in S_k} \varphi_I(\sigma^*(v_J))$$
$$= \sum_{\sigma \in S_k} \varphi_I(e_{j_{\sigma(1)}}, \dots, e_{j_{\sigma(k)}})$$

For each $\sigma \in S_k$, we have the following two cases: $(j_{\sigma(1)}, \ldots, j_{\sigma(k)})$ is non-decreasing, or it is not non-decreasing. If $(j_{\sigma(1)}, \ldots, j_{\sigma(k)})$ is non-decreasing, then it equals J, so it does not equal I

since $I \neq J$. Otherwise, if $(j_{\sigma(1)}, \ldots, j_{\sigma(k)})$ is not non-decreasing, then it does not equal I since I is non-decreasing. Either way, $(j_{\sigma(1)}, \ldots, j_{\sigma(k)}) \neq I$, so $\varphi_I(e_{j_{\sigma(1)}}, \ldots, e_{j_{\sigma(k)}}) = 0$. Since this is true for all $\sigma \in S_k$, we obtain:

$$\sigma_I(v_J) = \sum_{\sigma \in S_k} \varphi_I(e_{j_{\sigma(1)}}, \dots, e_{j_{\sigma(k)}}) = \sum_{\sigma \in S_k} 0 = 0,$$

as desired.

Step 2: For all $S, T \in S^k(V)$, we will prove that S = T if and only if, for all $I \in \underline{n}_{nd}^k$, we have $S(v_I) = T(v_I)$.

The " \Rightarrow " direction is clear. For the " \Leftarrow " direction, suppose that $S(v_I) = T(v_I)$ for all $I \in \underline{n}_{nd}^k$. First, we will show that $S(v_J) = T(v_J)$ for all $J \in \underline{n}^k$. Given $J = (j_1, \ldots, j_k) \in \underline{n}^k$, it is possible to sort the elements of J into non-decreasing order using some permutation $\sigma \in S_k$ to form a sequence $(j_{\sigma(1)}, \ldots, j_{\sigma(k)}) \in \underline{n}_{nd}^k$. Then, we obtain:

$$\begin{split} S(v_J) &= S(e_{j_{\sigma(1)}}, \dots, e_{j_{\sigma(k)}}) & \text{(Since } S \text{ is symmetric)} \\ &= T(e_{j_{\sigma(1)}}, \dots, e_{j_{\sigma(k)}}) & \text{(Since } (j_{\sigma(1)}, \dots, j_{\sigma(k)}) \in \underline{n}_{nd}^k) \\ &= T(v_J). & \text{(Since } S \text{ is symmetric)} \end{split}$$

Thus, $S(v_J) = T(v_J)$ for all $J \in \underline{n}^k$.

Next, for all $(v_1, \ldots, v_k) \in V^k$, we can write each v_i in the form $v_i = \sum_{j_i=1}^n a_{i,j_i} e_{j_i}$, where a_{i,j_i} are real coefficients. Then, we obtain:

$$S(v_1, \dots, v_k) = S\left(\sum_{j_1=1}^n a_{1,j_1} e_{j_1}, \sum_{j_2=1}^n a_{2,j_2} e_{j_2}, \dots, \sum_{j_k=1}^n a_{k,j_k} e_{j_k}\right)$$

$$= \sum_{j_1=1}^n a_{1,j_1} S(e_{j_1}, \sum_{j_2=1}^n a_{2,j_2} e_{j_2}, \dots, \sum_{j_k=1}^n a_{k,j_k} e_{j_k}) \quad \text{(Since } S \text{ is } k\text{-linear})$$

$$= \cdots$$

$$= \sum_{j_1=1}^n a_{1,j_1} \sum_{j_2=1}^n a_{2,j_2} \cdots \sum_{j_k=1}^n a_{k,j_k} S(e_{j_1}, e_{j_2}, \dots, e_{j_k})$$

$$= \sum_{j_1=1}^n a_{1,j_1} \cdots \sum_{j_k=1}^n a_{k,j_k} S(v_{(j_1,\dots,j_k)})$$

$$= \sum_{j_1=1}^n a_{1,j_1} \cdots \sum_{j_k=1}^n a_{k,j_k} T(v_{(j_1,\dots,j_k)}) \quad \text{(Since } S(v_J) = T(v_J) \text{ for all } J \in \underline{n}^k)$$

$$= \cdots$$

$$= T\left(\sum_{j_1=1}^n a_{1,j_1} e_{j_1}, \dots, \sum_{j_k=1}^n a_{k,j_k} e_{j_k}\right)$$

$$= T(v_1, \dots, v_k).$$

Therefore, $S(v_1, \ldots, v_k) = T(v_1, \ldots, v_k)$ for all $v_1, \ldots, v_k \in V$, so S = T. This concludes our proof that S = T if and only if $S(v_I) = T(v_I)$ for all $I \in \underline{n}_{nd}^k$, as desired.

Step 3: We will prove that $\{\sigma_I : I \in \underline{n}_{nd}^k\}$ spans $S^k(V)$.

Let T be any element of $S^k(V)$. For all $I \in \underline{n}_{nd}^k$, let us define the real coefficient $c_I := \frac{T(v_I)}{\sigma_I(v_I)}$; we can divide by $\sigma_I(v_I)$ because we proved in Step 1 that $\sigma_I(v_I) > 0$. Then, we claim that $T = \sum_{I \in \underline{n}_{nd}^k} c_I \sigma_I$. Indeed, for all $J \in \underline{n}_{nd}^k$, we have:

$$(\sum_{I \in \underline{n}_{nd}^{k}} c_{I} \sigma_{I})(v_{J}) = \sum_{I \in \underline{n}_{nd}^{k}} c_{I} \sigma_{I}(v_{J})$$

= $c_{J} \sigma_{J}(v_{J})$ (Since $\sigma_{I}(v_{J}) = 0$ if $I \neq J$)
= $\frac{T(v_{J})}{\sigma_{J}(v_{J})} \cdot \sigma_{J}(v_{J})$ (Definition of c_{J})
= $T(v_{J})$.

Since $(\sum_{I \in \underline{n}_{nd}^{k}} c_{I}\sigma_{I})(v_{J}) = T(v_{J})$ for all $J \in \underline{n}_{nd}^{k}$, it follows from Step 2 that $\sum_{I \in \underline{n}_{nd}^{k}} c_{I}\sigma_{I} = T$. Thus, we have expressed T as a linear combination of elements from $\{\sigma_{I} : I \in \underline{n}_{nd}^{k}\}$. Since this is possible for all $T \in S^{k}(V)$, we conclude that $\{\sigma_{I} : I \in \underline{n}_{nd}^{k}\}$ spans $S^{k}(V)$, as desired. **Step 4**: We will prove that $\{\sigma_{I} : I \in \underline{n}_{nd}^{k}\}$ is linearly independent.

Suppose that we have real coefficients c_I for all $I \in \underline{n}_{nd}^k$ such that $\sum_{I \in \underline{n}_{nd}^k} c_I \sigma_I = 0$. Then, for all $J \in \underline{n}_{nd}^k$, we obtain:

$$\left(\sum_{I \in \underline{n}_{nd}^{k}} c_{I}\sigma_{I}\right)(v_{J}) = 0$$
$$\sum_{I \in \underline{n}_{nd}^{k}} c_{I}\sigma_{I}(v_{J}) = 0$$

Applying Step 1, we have $\sigma_I(v_J) > 1$ if I = J and $\sigma_I(v_J) = 0$ otherwise, so the above summation equals $c_J \cdot \sigma_J(v_J)$. As a result, $c_J \cdot \sigma_J(v_J) = 0$, so $c_J = \frac{0}{\sigma_J(v_J)} = 0$ for all $J \in \underline{n}_{nd}^k$. Then, since the coefficients c_I must all equal zero whenever $\sum_{I \in \underline{n}_{nd}^k} c_I \sigma_I = 0$, we conclude that $\{\sigma_I : I \in \underline{n}_{nd}^k\}$ is linearly independent, as desired.

Overall, since $\{\sigma_I : I \in \underline{n}_{nd}^k\}$ spans $S^k(V)$ and is linearly independent, we conclude that it is a basis for $S^k(V)$, as required.

Finally, the number of elements in this basis equals the number of sequences I in \underline{n}_{nd}^k . In lecture, we proved that \underline{n}_{nd}^k has $\binom{n+k-1}{k}$ elements. Therefore, the dimension of $S^k(V)$ is $\binom{n+k-1}{k}$, as required.

Notes on intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions. (Note: This section was not submitted for grading.)

- 1. Our first task is to show that f is not alternating by constructing an example of $(u, v) \in \mathbb{R}^4 \times \mathbb{R}^4$ such that $f(u, v) \neq -f(v, u)$. To construct (u, v), the main idea is to find a term in f(x, y)of the form $x_i y_j$ without a corresponding term $-x_j y_i$, then to set $u = e_i$ and $y = e_j$. In this case, f(x, y) contains the term $x_1 y_1$ without a corresponding $-x_1 y_1$, so we set $u = v = e_1$. This same strategy also works to show that g is not alternating: Since g(x, y) contains $x_1 y_3$ without a corresponding $-x_3 y_1$, we pick $u = e_1$ and $v = e_3$. Finally, the function h was a "trick question" because although h is alternating (i.e., h(x, y) = -h(y, x)), h is still not an alternating tensor because it is not bilinear.
- 2. The main idea is that $\Lambda^n(\mathbb{R}^n)$ has a dimension of 1 and only has one basic element ω_{I_0} , where $I_0 = (1, \ldots, n) \in \underline{n}_a^n$. Then, det is a multiple of ω_{I_0} . After a simple computation shows that $\det(v_{I_0}) = 1 = \omega_{I_0}(v_{I_0})$, this motivates our hypothesis that $\det = \omega_{I_0}$. Then, we can use the same computation to prove our hypothesis.
- 3. The main idea is to find the ω_J -coefficient of $L^*\omega_I$ by computing $(L^*\omega_I)(v_J)$. Once we reach the step:

$$(L^*\omega_I)(v_J) = \sum_{\sigma \in S_k} (-1)^{\sigma} a_{i_1, j_{\sigma(1)}} a_{i_2, j_{\sigma(2)}} \cdots a_{i_k, j_{\sigma(k)}},$$

we observe that the terms $a_{i_1,j_{\sigma(1)}},\ldots,a_{i_k,j_{\sigma(k)}}$ always comes from the same submatrix of A containing Rows i_1,\ldots,i_k and Columns j_1,\ldots,j_k . This motivates us to define $A_{I,J}$ to be this submatrix. Once we further compute that $(L^*\omega_I)(v_J) = \det(A_{I,J})$, this motivates our hypothesis that $L^*\omega_I = \sum_{J \in \underline{m}_a^k} \det(A_{I,J})\omega_J$. Then, we can prove our hypothesis using the same computation.

4. The main idea is to follow the same procedure that was used in lecture to develop a theory of alternating tensors – in fact, this strategy helps us to write almost all of the solution. The new tasks for our solution are to define σ_I and <u>m</u>^k_{nd}. To motivate our definition for σ_I, we begin with the definition ω_I = Σ_{σ∈S_k}(-1)^σφ_I ∘ σ^{*} for basic alternating tensors, and then we remove the (-1)^σ so that the tensor is symmetric instead of alternating. Next, to motivate the definition of <u>m</u>^k_{nd}, we first review the motivation for the definition of <u>m</u>^k_a. When constructing basic elements ω_I for Λ^k(V), we first restricted to our attention to non-decreasing sequences I because if I were not non-decreasing, then it could be sorted into a non-decreasing sequence I', and we could write ω_I in terms of ω_{I'}. Then, we restricted our attention further to strictly increasing sequences I because if for symmetric tensors σ_I, we still need to restrict our attention to non-decreasing sequences I because I because if or symmetric tensors σ_I, we still need to restrict our attention to non-decreasing sequences I because I because I for the same reason as above. However, σ_I no longer kills repetitions, so we no longer need I to be strictly increasing. This leads us to our definition of <u>m</u>^k_{nd}, as desired.