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1. We are given the following functions from R4 × R4 to R:

f(x, y) := x1y2 − x2y1 + x1y1,

g(x, y) := x1y3 − x3y2,

h(x, y) := (x1)
3(y2)

3 − (x2)
3(y1)

3.

We will determine whether or not these functions are alternating tensors.

First, we claim that f is not an alternating tensor. Consider the vectors u = (1, 0, 0, 0) and
v = (1, 0, 0, 0). Then, we can compare f(u, v) with f(v, u) as follows:

f(u, v) = u1v2 − u2v1 + u1v1 f(v, u) = v1u2 − v2u1 + v1u1

= 1 · 0− 0 · 1 + 1 · 1 = 1 · 0− 0 · 1 + 1 · 1
= 1 = 1

Since f(u, v) 6= −f(v, u), we conclude that f is not an alternating tensor, as required.

Next, we claim that g is not an alternating tensor. Consider the vectors u = (1, 0, 0, 0) and
v = (0, 0, 1, 0). Then, we can compare g(u, v) with g(v, u) as follows:

g(u, v) = u1v3 − u3v2 g(v, u) = v1u3 − v3u2
= 1 · 1− 0 · 0 = 0 · 0− 1 · 0
= 1 = 0

Since g(u, v) 6= −g(v, u), we conclude that g is not an alternating tensor, as required.

Next, we claim that h is not an alternating tensor because h is not bilinear. Consider the vectors
u = (1, 0, 0, 0) and v = (0, 1, 0, 0). Then, we can compare h(u, v) with h(2u, v) as follows:

h(u, v) = (u1)
3(v2)

3 − (u2)
3(v1)

3 h(2u, v) = (2u1)
3(v2)

3 − (2u2)
3(v1)

3

= 13 · 13 − 03 · 03 = 23 · 13 − 03 · 03

= 1 = 8

Since h(2u, v) 6= 2h(u, v), we conclude that h is not bilinear, so h is also not an alternating
tensor, as required.
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2. We are given that the determinant det : Rn×n → R, when viewed as a function of n column
vectors of length n, is an alternating tensor. Then, we will write it in terms of the elementary
alternating tensors ωI , where I ∈ nna , assuming the standard basis (e1, . . . , en) of Rn.
First, the only element of nna is (1, 2, . . . , n) because an increasing sequence containing n distinct
elements from {1, . . . , n} must contain all elements from {1, . . . , n} in increasing order. Then,
let us denote I0 := (1, 2, . . . , n). We will show that det = ωI0 .
In lecture, we proved that two alternating tensors are equal if and only if they agree on arguments
of the form vI , where I ∈ nna . Thus, it suffices to prove that det(vI0) = ωI0(vI0). We also
proved in lecture that ωI(vI) = 1 for all I ∈ nna , so ωI0(vI0) = 1. Then, it suffices to prove that
det(vI0) = 1, which we will prove below:

det(vI0) = det(e1, . . . , en)

= det In

= 1,

where In denotes the identity matrix of size n. Since det(vI0) = 1 = ωI0(vI0), we conclude that
det = ωI0 , as required.
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3. We are given a linear transformation L : Rm → Rn represented by a matrix A = (ai,j) ∈Mn×m(R)
relative to the standard basis (e1, . . . , en) of Rn and the standard basis (f1, . . . , fm) of Rm. Given
an elementary alternating k-tensor ωI on Rn, where I = (i1, . . . , ik) ∈ nka, we will write L∗ωI as
a linear combination

∑
J∈mka

cJωJ of the elementary alternating k-tensors ωJ on Rm.
First, let us verify that L∗ωI is an alternating k-tensor on Rm. For all v1, . . . , vk ∈ Rm and all
σ ∈ Sk, we have:

((L∗ωI) ◦ σ∗)(v1, . . . , vk) = (L∗ωI)(vσ(1), . . . , vσ(k))

= ωI(Lvσ(1), . . . , Lvσ(k))

= (ωI ◦ σ∗)(Lv1, . . . , Lvk)
= (−1)σωI(Lv1, . . . , Lvk) (Since ωI is alternating)

= (−1)σ(L∗ωI)(v1, . . . , vk).

Since ((L∗ωI)◦σ∗)(v1, . . . , vk) = (−1)σ(L∗ωI)(v1, . . . , vk) for all v1, . . . , vk ∈ Rm and all σ ∈ Sk,
we conclude that L∗ωI is alternating, as desired.
Next, for all J = (j1, . . . , jk) ∈ mk

a, let us define the matrix AI,J as follows:

AI,J :=


ai1,j1 ai1,j2 · · · ai1,jk
ai2,j1 ai2,j2 · · · ai2,jk

...
...

. . .
...

aik,j1 aik,j2 · · · aik,jk

 .

Then, we will prove that L∗ωI =
∑

J∈mka
det(AI,J)ωJ .

First, we proved in lecture that two alternating tensors on Rm are equal if and only if they
agree on arguments of the form vJ ∈ (Rm)k, where J ∈ mk

a. Then, to prove that L∗ωI equals∑
J∈mka

det(AI,J)ωJ , it suffices to show that (L∗ωI)(vJ) = (
∑

J ′∈mka
det(AI,J ′)ωJ ′)(vJ) for all

J = (j1, . . . , jk) ∈ mk
a. First, we can evaluate (L∗ωI)(vJ) as follows:

(L∗ωI)(vJ) = (L∗ωI)(fj1 , . . . , fjk)

= ωI(Lfj1 , . . . , Lfjk)

= ωI(Afj1 , . . . , Afjk)

=
∑
σ∈Sk

(−1)σ(ϕI ◦ σ∗)(Afj1 , . . . , Afjk) (Definition of ωI)

=
∑
σ∈Sk

(−1)σϕI(Afjσ(1) , . . . , Afjσ(k))

=
∑
σ∈Sk

(−1)σϕI(

n∑
i=1

ai,jσ(1)ei, . . . ,

n∑
i=1

ai,jσ(k)ei)

=
∑
σ∈Sk

(−1)σϕi1(

n∑
i=1

ai,jσ(1)ei)ϕi2(

n∑
i=1

ai,jσ(2)ei) · · ·ϕik(

n∑
i=1

ai,jσ(k)ei)

=
∑
σ∈Sk

(−1)σai1,jσ(1)ai2,jσ(2) · · · aik,jσ(k)

=
∑
σ∈Sk

(−1)σ(AI,J)1,σ(1)(AI,J)2,σ(2) · · · (AI,J)k,σ(k)

= det(AI,J),
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where (AI,J)r,c denotes the entry in the rth row and cth column of AI,J .
We also showed in lecture that, for all J1, J2 ∈ mk

a, we have ωJ1(vJ2) = 1 if J1 = J2 and
ωJ1(vJ2) = 0 otherwise. Then, we can evaluate (

∑
J ′∈mka

det(AI,J ′)ωJ ′)(vJ) as follows:

(
∑
J ′∈mka

det(AI,J ′)ωJ ′)(vJ) =
∑
J ′∈mka

det(AI,J ′)ωJ ′(vJ)

= det(AI,J)ωJ(vJ) +
∑
J ′∈mka
J ′ 6=J

det(AI,J ′)ωJ ′(vJ)

= det(AI,J) + 0

= det(AI,J)

= (L∗ωI)(vJ).

Therefore, since (
∑

J ′∈mka
det(AI,J ′)ωJ ′)(vJ) = (L∗ωI)(vJ) for all J ∈ mk

a, we conclude that

L∗ωI =
∑

J∈mka
det(AI,J)ωJ . In other words, we have written L∗ωI as a linear combination∑

J∈mka
cJωJ with coefficients cJ = det(AI,J) , as required.
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4. We will develop a theory of symmetric tensors. First, let V be an n-dimensional vector space, and
let k be any positive integer. Then, we define a symmetric k-tensor on V to be a k-tensor on V
whose outputs are unchanged if the arguments are permuted. Formally, we define a k-tensor T
on V to be symmetric if we have:

T (v1, . . . , vk) = T (vσ(1), . . . , vσ(k))

for all arguments v1, . . . , vk ∈ V and all permutations σ ∈ Sk.
Finally, let us define Sk(V ) to be the set of all symmetric k-tensors on V .
Now, we will show that Sk(V ) is a vector subspace of T k(V ). First, Sk(V ) is nonempty because
it contains the zero tensor. Indeed, if we pick T0 ∈ T k(V ) defined by T0(v1, . . . , vk) = 0, then
we obtain:

T0(v1, . . . , vk) = 0 = T0(vσ(1), . . . , vσ(k))

for all v1, . . . , vk ∈ V and all σ ∈ Sk, which shows that T0 ∈ Sk(V ). Next, to show that Sk(V )
is closed under addition and scalar multiplication, it suffices to show that λS + T ∈ Sk(V ) for all
S, T ∈ Sk(V ) and all λ ∈ R. Indeed, for all v1, . . . , vk ∈ V and all σ ∈ Sk, we have:

= (λS + T )(vσ(1), . . . , vσ(k))

= λS(vσ(1), . . . , vσ(k)) + T (vσ(1), . . . , vσ(k))

= λS(v1, . . . , vk) + T (v1, . . . , vk) (Since S, T are symmetric)

= (λS + T )(v1, . . . , vk).

Since (λS + T )(v1, . . . , vk) = (λS + T )(vσ(1), . . . , vσ(k)), we find that λS + T is also symmetric,

so Sk(V ) is closed under addition and scalar multiplication. Thus, since Sk(V ) is nonempty and
closed under addition and scalar multiplication, Sk(V ) is a vector subspace of T k(V ), as required.
Next, we will construct a basis for Sk(V ). To begin, let (e1, . . . , en) be a basis for V , and let
{ϕI : I ∈ nk} be the corresponding basis for T k(V ). Also, let us define nknd to be the set of all
non-decreasing sequences of length k with elements in {1, . . . , n}, as was done in lecture. Then,
for all I ∈ nknd, let us define the tensor σI ∈ T k(V ) by:

σI :=
∑
σ∈Sk

ϕI ◦ σ∗.

Then, for all I ∈ nknd, we will prove that σI is symmetric.
First, permuting arguments of σI is equivalent to composing σI with τ∗, where τ ∈ Sk is a
permutation. Then, to prove that the outputs of σI are unchanged if its arguments are permuted,
we need to prove that σI = σI ◦ τ∗ for all permutations τ :

σI ◦ τ∗ =

( ∑
σ∈Sk

ϕI ◦ σ∗
)
◦ τ∗ (Definition of σI)

=
∑
σ∈Sk

(ϕI ◦ σ∗ ◦ τ∗)

=
∑
σ∈Sk

(ϕI ◦ (τ ◦ σ)∗)

In this summation, we claim that τ ◦σ takes on the value of every permutation in Sk exactly once
as σ ranges over all permutations in Sk. Indeed, for all σ′ ∈ Sk, we claim that τ ◦ σ = σ′ if and
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only if σ = τ−1 ◦σ′. For the “⇒” direction, if τ ◦σ = σ′, then we can apply τ−1 to both sides to
obtain τ−1 ◦ τ ◦ σ = τ−1 ◦ σ′, so σ = τ−1 ◦ σ′. For the “⇐” direction, if σ = τ−1 ◦ σ′, then we
can compute τ ◦ σ = τ ◦ τ−1 ◦ σ′ = σ′. Thus, τ ◦ σ = σ′ if and only if σ equals the permutation
τ−1 ◦ σ′, so τ ◦ σ equals every permutation in Sk exactly once as σ ranges over all permutations
in Sk, as desired. Then, the above summation can be evaluated as:

σI ◦ τ∗ =
∑
σ∈Sk

(ϕI ◦ (τ ◦ σ)∗)

=
∑
σ′∈Sk

(ϕI ◦ σ′)

= σI .

Therefore, σI = σI ◦ τ∗ for all permutations τ , so σI ∈ Sk(V ), as required.
Next, we will prove that:

{σI : I ∈ nknd}

is a basis for Sk(V ). We will do this using the four following steps:
Step 1: For all I = (i1, . . . , ik), J = (j1, . . . , jk) ∈ nknd, we will prove that σI(vJ) > 0 if I = J
and σI(vJ) = 0 otherwise.
First, suppose that I = J . Then, we obtain:

σI(vJ) =
∑
σ∈Sk

ϕI(σ
∗(vJ))

= ϕI(id
∗(vJ)) +

∑
σ∈Sk
σ 6=id

ϕI(σ
∗(vJ)) (Where id denotes the identity permutation)

= ϕI(ejid(1) , . . . , ejid(1)) +
∑
σ∈Sk
σ 6=id

ϕI(ejσ(1) , . . . , ejσ(k))

= ϕI(ej1 , . . . , ejk) +
∑
σ∈Sk
σ 6=id

ϕI(ejσ(1) , . . . , ejσ(k))

= ϕI(eJ) +
∑
σ∈Sk
σ 6=id

ϕI(ejσ(1) , . . . , ejσ(k)).

Since I = J , we have ϕI(eJ) = 1. Moreover, for all σ ∈ Sk such that σ 6= id, we have
ϕI(ejσ(1) , . . . , ejσ(k)) = 1 if I = (jσ(1), . . . , jσ(k)), and ϕI(ejσ(1) , . . . , ejσ(k)) = 0 otherwise. Either
way, ϕI(ejσ(1) , . . . , ejσ(k)) is nonnegative. Thus, the entire summation is at least 1, so σI(vJ) > 0
if I = J , as desired.
Next, suppose that I 6= J . Then, we obtain:

σI(vJ) =
∑
σ∈Sk

ϕI(σ
∗(vJ))

=
∑
σ∈Sk

ϕI(ejσ(1) , . . . , ejσ(k)).

For each σ ∈ Sk, we have the following two cases: (jσ(1), . . . , jσ(k)) is non-decreasing, or it is
not non-decreasing. If (jσ(1), . . . , jσ(k)) is non-decreasing, then it equals J , so it does not equal I
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since I 6= J . Otherwise, if (jσ(1), . . . , jσ(k)) is not non-decreasing, then it does not equal I since
I is non-decreasing. Either way, (jσ(1), . . . , jσ(k)) 6= I, so ϕI(ejσ(1) , . . . , ejσ(k)) = 0. Since this is
true for all σ ∈ Sk, we obtain:

σI(vJ) =
∑
σ∈Sk

ϕI(ejσ(1) , . . . , ejσ(k)) =
∑
σ∈Sk

0 = 0,

as desired.
Step 2: For all S, T ∈ Sk(V ), we will prove that S = T if and only if, for all I ∈ nknd, we have
S(vI) = T (vI).
The “⇒” direction is clear. For the “⇐” direction, suppose that S(vI) = T (vI) for all I ∈ nknd.
First, we will show that S(vJ) = T (vJ) for all J ∈ nk. Given J = (j1, . . . , jk) ∈ nk, it is possible
to sort the elements of J into non-decreasing order using some permutation σ ∈ Sk to form a
sequence (jσ(1), . . . , jσ(k)) ∈ nknd. Then, we obtain:

S(vJ) = S(ejσ(1) , . . . , ejσ(k)) (Since S is symmetric)

= T (ejσ(1) , . . . , ejσ(k)) (Since (jσ(1), . . . , jσ(k)) ∈ nknd)

= T (vJ). (Since S is symmetric)

Thus, S(vJ) = T (vJ) for all J ∈ nk.
Next, for all (v1, . . . , vk) ∈ V k, we can write each vi in the form vi =

∑n
ji=1 ai,jieji , where ai,ji

are real coefficients. Then, we obtain:

S(v1, . . . , vk) = S(
n∑

j1=1

a1,j1ej1 ,
n∑

j2=1

a2,j2ej2 , . . . ,
n∑

jk=1

ak,jkejk)

=

n∑
j1=1

a1,j1S(ej1 ,

n∑
j2=1

a2,j2ej2 , . . . ,

n∑
jk=1

ak,jkejk) (Since S is k-linear)

= · · ·

=

n∑
j1=1

a1,j1

n∑
j2=1

a2,j2 · · ·
n∑

jk=1

ak,jkS(ej1 , ej2 , . . . , ejk)

=

n∑
j1=1

a1,j1 · · ·
n∑

jk=1

ak,jkS(v(j1,...,jk))

=

n∑
j1=1

a1,j1 · · ·
n∑

jk=1

ak,jkT (v(j1,...,jk)) (Since S(vJ) = T (vJ) for all J ∈ nk)

=

n∑
j1=1

a1,j1 · · ·
n∑

jk=1

ak,jkT (ej1 , . . . , ejk)

= · · ·

= T (
n∑

j1=1

a1,j1ej1 , . . . ,
n∑

jk=1

ak,jkejk)

= T (v1, . . . , vk).

Therefore, S(v1, . . . , vk) = T (v1, . . . , vk) for all v1, . . . , vk ∈ V , so S = T . This concludes our
proof that S = T if and only if S(vI) = T (vI) for all I ∈ nknd, as desired.
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Step 3: We will prove that {σI : I ∈ nknd} spans Sk(V ).

Let T be any element of Sk(V ). For all I ∈ nknd, let us define the real coefficient cI := T (vI)
σI(vI)

;

we can divide by σI(vI) because we proved in Step 1 that σI(vI) > 0. Then, we claim that
T =

∑
I∈nknd

cIσI . Indeed, for all J ∈ nknd, we have:

(
∑
I∈nknd

cIσI)(vJ) =
∑
I∈nknd

cIσI(vJ)

= cJσJ(vJ) (Since σI(vJ) = 0 if I 6= J)

=
T (vJ)

σJ(vJ)
· σJ(vJ) (Definition of cJ)

= T (vJ).

Since (
∑

I∈nknd
cIσI)(vJ) = T (vJ) for all J ∈ nknd, it follows from Step 2 that

∑
I∈nknd

cIσI = T .

Thus, we have expressed T as a linear combination of elements from {σI : I ∈ nknd}. Since this
is possible for all T ∈ Sk(V ), we conclude that {σI : I ∈ nknd} spans Sk(V ), as desired.
Step 4: We will prove that {σI : I ∈ nknd} is linearly independent.
Suppose that we have real coefficients cI for all I ∈ nknd such that

∑
I∈nknd

cIσI = 0. Then, for

all J ∈ nknd, we obtain:

(
∑
I∈nknd

cIσI)(vJ) = 0

∑
I∈nknd

cIσI(vJ) = 0

Applying Step 1, we have σI(vJ) > 1 if I = J and σI(vJ) = 0 otherwise, so the above summation
equals cJ ·σJ(vJ). As a result, cJ ·σJ(vJ) = 0, so cJ = 0

σJ (vJ )
= 0 for all J ∈ nknd. Then, since the

coefficients cI must all equal zero whenever
∑

I∈nknd
cIσI = 0, we conclude that {σI : I ∈ nknd}

is linearly independent, as desired.
Overall, since {σI : I ∈ nknd} spans Sk(V ) and is linearly independent, we conclude that it is a
basis for Sk(V ), as required.
Finally, the number of elements in this basis equals the number of sequences I in nknd. In lecture,

we proved that nknd has
(
n+k−1

k

)
elements. Therefore, the dimension of Sk(V ) is

(
n+k−1

k

)
, as

required.
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Notes on intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions.
(Note: This section was not submitted for grading.)

1. Our first task is to show that f is not alternating by constructing an example of (u, v) ∈ R4×R4

such that f(u, v) 6= −f(v, u). To construct (u, v), the main idea is to find a term in f(x, y)
of the form xiyj without a corresponding term −xjyi, then to set u = ei and y = ej . In this
case, f(x, y) contains the term x1y1 without a corresponding −x1y1, so we set u = v = e1. This
same strategy also works to show that g is not alternating: Since g(x, y) contains x1y3 without a
corresponding −x3y1, we pick u = e1 and v = e3. Finally, the function h was a ”trick question”
because although h is alternating (i.e., h(x, y) = −h(y, x)), h is still not an alternating tensor
because it is not bilinear.

2. The main idea is that Λn(Rn) has a dimension of 1 and only has one basic element ωI0 , where
I0 = (1, . . . , n) ∈ nna . Then, det is a multiple of ωI0 . After a simple computation shows that
det(vI0) = 1 = ωI0(vI0), this motivates our hypothesis that det = ωI0 . Then, we can use the
same computation to prove our hypothesis.

3. The main idea is to find the ωJ -coefficient of L∗ωI by computing (L∗ωI)(vJ). Once we reach
the step:

(L∗ωI)(vJ) =
∑
σ∈Sk

(−1)σai1,jσ(1)ai2,jσ(2) · · · aik,jσ(k) ,

we observe that the terms ai1,jσ(1) , . . . , aik,jσ(k) always comes from the same submatrix of A
containing Rows i1, . . . , ik and Columns j1, . . . , jk. This motivates us to define AI,J to be
this submatrix. Once we further compute that (L∗ωI)(vJ) = det(AI,J), this motivates our
hypothesis that L∗ωI =

∑
J∈mka

det(AI,J)ωJ . Then, we can prove our hypothesis using the same
computation.

4. The main idea is to follow the same procedure that was used in lecture to develop a theory of
alternating tensors – in fact, this strategy helps us to write almost all of the solution. The new
tasks for our solution are to define σI and nknd. To motivate our definition for σI , we begin with
the definition ωI =

∑
σ∈Sk(−1)σϕI ◦ σ∗ for basic alternating tensors, and then we remove the

(−1)σ so that the tensor is symmetric instead of alternating. Next, to motivate the definition of
nknd, we first review the motivation for the definition of nka. When constructing basic elements ωI
for Λk(V ), we first restricted to our attention to non-decreasing sequences I because if I were
not non-decreasing, then it could be sorted into a non-decreasing sequence I ′, and we could write
ωI in terms of ωI′ . Then, we restricted our attention further to strictly increasing sequences I
because if I had repeating entries, we would get ωI = 0 because ωI kills repetitions. Transitioning
to symmetric tensors σI , we still need to restrict our attention to non-decreasing sequences I for
the same reason as above. However, σI no longer kills repetitions, so we no longer need I to be
strictly increasing. This leads us to our definition of nknd, as desired.
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