Q1a: We claim that $\gamma=\left(\iota\left(v_{1}\right) \ldots \iota\left(v_{n}\right)\right)$ is a basis for $V^{* *}$ and that it is the dual basis of $\left(\phi_{1} \ldots \phi_{n}\right)$, the dual basis of V^{*} We will prove that γ is linearly independant and spans $V^{* *}$. First suppose that for some scalar $\alpha_{1}, \ldots, \alpha_{n}$ we have that

$$
\alpha_{1} \iota\left(v_{1}\right)+\ldots \alpha_{n} \iota\left(v_{n}\right)=0
$$

From the definition of ι, we have

$$
\alpha_{1} \phi\left(v_{1}\right)+\ldots \alpha_{n} \phi\left(v_{n}\right)=0, \forall \phi \in V^{*}
$$

Now write $\phi=\beta_{1} \phi_{q}+\ldots \beta_{n} \phi_{n}$ for scalars $\beta_{1}, \ldots \beta_{n}$. We see that

$$
\alpha_{1}\left(\beta_{1} \phi_{1}\left(v_{1}\right)+\cdots+\beta_{n} \phi_{n}\left(v_{1}\right)\right)+\ldots \alpha_{n}\left(\beta_{1} \phi_{1}\left(v_{n}\right)+\ldots \beta_{n} \phi_{n}\left(v_{n}\right)\right)=0
$$

From the definition of the dual basis this gives us:

$$
\alpha_{1} \beta_{1}+\cdots+\alpha_{n} \beta_{n}=0
$$

Since this is true for every β_{i}, we must have that $\alpha_{1}=\cdots=\alpha_{n}=0$. Hence γ is a linearly independant set. We now claim that it spans $V^{* *}$. Now suppose that $\psi \in V^{* *}$, and $\psi\left(\phi_{i}\right)=k_{i}$. Let $\phi=\beta_{1} \phi_{1}+\ldots \beta_{n} \phi_{n}$. We see that

$$
\begin{aligned}
\psi(\phi) & =\psi\left(\beta_{1} \phi_{1}+\cdots+\beta_{n} \phi_{n}\right) \\
& =\beta_{1} k_{1}+\cdots+\beta_{n} k_{n} \\
& =k_{1} \phi\left(v_{1}\right)+\ldots k_{n} \phi\left(v_{n}\right) \\
& =k_{1} \iota_{v_{1}}(\phi)+\cdots+k_{n} \iota_{v_{n}}(\phi)
\end{aligned}
$$

Thus γ spans $V^{* *}$ and we conclude it is a basis. We now want to show that γ is dual to $\left(\phi_{1}, \ldots, \phi_{n}\right)$. Notice that

$$
\iota\left(v_{i}\right)\left(\phi_{j}\right)=\phi_{j}\left(v_{i}\right)=\delta_{i j}
$$

We conclude that γ is indeed the dual of $\left(\phi_{1}, \ldots \phi_{n}\right)$
Q1b: First, observe that $\iota(v)(\alpha \phi+\psi)=\alpha \phi+\psi(v)=\alpha \phi(v)+\phi(v)=\alpha \iota(v)(\phi)+\iota(v)(\psi)$, so ι is linear. Note that by 1 b , we see that the image of ι is n dimensional, and the domain is as well n dimensional. Hence by the Rank-Nullity theorem we conclude it is a bijection. Thus it is a linear isomorphism between V and $V^{* *}$

Q2: Since V a 3 dimensional vector space we have from basic linear algebra that V^{*} will also be 3 dimensional. It suffices to check that $\phi_{-1}, \phi_{0}, \phi_{1}$ either span V^{*} or are linearly independant. We will show linear independance. We will denote $p \in V$ as $p(x)=a x^{2}+b x+c$. Suppose that for some scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}$,

$$
\alpha_{1} \phi_{-1}(p)+\alpha_{2} \phi_{0}(p)+\alpha_{3} \phi_{1}(p)=0, \forall p \in V
$$

Then we have that

$$
\alpha_{1}(a-b+c)+\alpha_{2}(c)+\alpha_{3}(a+b+c)=0
$$

Re writing this expression get that

$$
a\left(\alpha_{1}+\alpha_{4}\right)+b\left(\alpha_{3}-\alpha_{3}\right)+c\left(\alpha_{2}+\alpha_{3}\right)
$$

Since this is true for all polynomials, we, taking $b=1=a, c=0$ we see that $\alpha_{3}=0$, taking $a=c=0, b=1$ gives us that $\alpha_{1}=\alpha_{3}=0$. Finally, if we take $a=1$, we see that $\alpha_{2}=-\alpha_{1}=0$. Thus we conclude this is a linearly independant list, and so it is a basis of V^{*}. We now will find a basis $\beta=\left(p_{-1}, p_{0}, p_{1}\right)$ of V so that $\beta^{*}=\gamma$. In other words, for each $\phi_{i}, \phi_{i}\left(p_{j}\right)=\delta_{i j}$. First consider p_{-1}. We require that $p_{-1}(-1)=1, p_{-1}(0)=p_{-1}(1)=0$. Choosing $p_{-1}(x)=\frac{1}{2} x^{2}-\frac{1}{2} x$ will satisfy these properties. Setting $p_{0}(x)=-x^{2}+1$, we see that $p_{0}(-1)=p_{0}(1)=0$ and $p_{0}(0)=1$. Finally, setting $p_{1}(x)=\frac{1}{2} x^{2}+\frac{1}{2}$ will give us the desired properties. Hence the basis $\beta=\left(\frac{1}{2} x^{2}-\frac{1}{2} x,-x^{2}+1, \frac{1}{2} x^{2}+\frac{1}{2} x\right)$ satisifes $\beta^{*}=\gamma$.

Q3: To show that $B \in \mathcal{T}^{2}\left(\mathcal{T}^{k}(V)\right)$, we must show that it is 2-linear. Thus, for $T_{1}, T_{2}, T_{3} \in \mathcal{T}^{k}(V)$ and $\alpha \in \mathbb{R}$, we evaluate $B\left(T_{1}+\alpha T_{2}, T_{3}\right)$ and $B\left(T_{1}, T_{2}+\alpha T_{3}\right)$. We see the following:

$$
\begin{aligned}
B\left(T_{1}+\alpha T_{2}, T_{3}\right) & =\sum_{i_{1}, \ldots, i_{k}=1}^{n}\left(T_{1}+\alpha T_{2}\right)\left(v_{i_{1}} \ldots v_{i_{k}}\right) T_{3}\left(v_{i_{1}} \ldots v_{i_{k}}\right) \\
& =\sum_{i_{1}, \ldots, i_{k}=1}^{n}\left[T_{1}\left(v_{i_{1}} \ldots v_{i_{k}}\right)+\alpha T_{2}\left(v_{i_{1}} \ldots v_{i_{k}}\right)\right] T_{3}\left(v_{i_{1}} \ldots v_{i_{k}}\right) \\
& =\sum_{i_{1}, \ldots, i_{k}=1}^{n} T_{1}\left(v_{i_{1}} \ldots v_{i_{k}}\right) T_{3}\left(v_{i_{1}} \ldots v_{i_{k}}\right)+\alpha T_{2}\left(v_{i_{1}} \ldots v_{i_{k}}\right) T_{3}\left(v_{i_{1}} \ldots v_{i_{k}}\right) \\
& =\sum_{i_{1}, \ldots, i_{k}=1}^{n} T_{1}\left(v_{i_{1}} \ldots v_{i_{k}}\right) T_{3}\left(v_{i_{1}} \ldots v_{i_{k}}\right)+\alpha \sum_{i_{1}, \ldots, i_{k}}^{n} T_{2}\left(v_{i_{1}} \ldots v_{i_{k}}\right) T_{3}\left(v_{i_{1}} \ldots v_{i_{k}}\right) \\
& =B\left(T_{1}, T_{3}\right)+\alpha B\left(T_{2}, T_{3}\right)
\end{aligned}
$$

By almost exactly the same computation, we see that $B\left(T_{1}, T_{2}+\alpha T_{3}\right)=B\left(T_{1}, T_{2}\right)+\alpha B\left(T_{1}, T_{3}\right)$. B is bilinear and hence belongs to $\mathcal{T}^{2}\left(\mathcal{T}^{k}(V)\right)$

Q3b: We now wish to show that B is an inner product on $\mathcal{T}^{k}(V)$. We have shown above that B is bilinear. It remains to prove it is symmetric and positive definite. First, observe the following:

$$
\begin{aligned}
B\left(T_{1}, T_{2}\right) & =\sum_{i_{1}, \ldots, i_{k}=1}^{n} T_{1}\left(v_{i_{1}} \ldots v_{i_{k}}\right) T_{2}\left(v_{i_{1}} \ldots v_{i_{k}}\right) \\
& =\sum_{i_{1}, \ldots, i_{k}=1}^{n} T_{2}\left(v_{i_{1}} \ldots v_{i_{k}}\right) T_{1}\left(v_{i_{1}} \ldots v_{i_{k}}\right) \\
& =B\left(T_{2}, T_{1}\right)
\end{aligned}
$$

Hence B is symmetric. We will now show that for any $T \in \mathcal{T}^{k}(V), B(T, T) \geq 0$ with equality holding if and only if $T=0$. Observe:

$$
\begin{aligned}
B(T, T) & =\sum_{i_{1}, \ldots, i_{k}=1}^{n} T\left(v_{i_{1}} \ldots v_{i_{k}}\right) T\left(v_{i_{1}} \ldots v_{i_{k}}\right) \\
& =\sum_{i_{1}, \ldots, i_{k}}^{n}\left[T\left(v_{i_{1}} \ldots v_{i_{k}}\right)\right]^{2} \geq 0
\end{aligned}
$$

We note that equality holds if and only iff for each $v_{i_{j}}, T\left(v_{i_{1}} \ldots v_{i_{k}}\right)=0$, meaning that on any k-tuple of basis vectors, $T=0$. This is equivalent to saying that T is the 0 -mapping.

