
Assignment 11 MAT 257

Q1a: We claim that γ = (ι(v1) . . . ι(vn)) is a basis for V ∗∗ and that it is the dual basis of (ϕ1 . . . ϕn), the
dual basis of V ∗ We will prove that γ is linearly independant and spans V ∗∗. First suppose that for some
scalar α1, . . . , αn we have that

α1ι(v1) + . . . αnι(vn) = 0

From the definition of ι, we have

α1ϕ(v1) + . . . αnϕ(vn) = 0,∀ϕ ∈ V ∗

Now write ϕ = β1ϕq + . . . βnϕn for scalars β1, . . . βn. We see that

α1(β1ϕ1(v1) + · · ·+ βnϕn(v1)) + . . . αn(β1ϕ1(vn) + . . . βnϕn(vn)) = 0

From the definition of the dual basis this gives us:

α1β1 + · · ·+ αnβn = 0

Since this is true for every βi, we must have that α1 = · · · = αn = 0. Hence γ is a linearly independant set.
We now claim that it spans V ∗∗. Now suppose that ψ ∈ V ∗∗, and ψ(ϕi) = ki. Let ϕ = β1ϕ1 + . . . βnϕn. We
see that

ψ(ϕ) = ψ(β1ϕ1 + · · ·+ βnϕn)

= β1k1 + · · ·+ βnkn

= k1ϕ(v1) + . . . knϕ(vn)

= k1ιv1(ϕ) + · · ·+ knιvn(ϕ)

Thus γ spans V ∗∗ and we conclude it is a basis. We now want to show that γ is dual to (ϕ1, . . . , ϕn). Notice
that

ι(vi)(ϕj) = ϕj(vi) = δij

We conclude that γ is indeed the dual of (ϕ1, . . . ϕn)

Q1b: First, observe that ι(v)(αϕ + ψ) = αϕ + ψ(v) = αϕ(v) + ϕ(v) = αι(v)(ϕ) + ι(v)(ψ), so ι is lin-
ear. Note that by 1b, we see that the image of ι is n dimensional, and the domain is as well n dimensional.
Hence by the Rank-Nullity theorem we conclude it is a bijection . Thus it is a linear isomorphism between
V and V ∗∗
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Q2: Since V a 3 dimensional vector space we have from basic linear algebra that V ∗ will also be 3 dimen-
sional. It suffices to check that ϕ−1, ϕ0, ϕ1 either span V ∗ or are linearly independant. We will show linear
independance. We will denote p ∈ V as p(x) = ax2 + bx+ c. Suppose that for some scalars α1, α2, α3,

α1ϕ−1(p) + α2ϕ0(p) + α3ϕ1(p) = 0,∀p ∈ V

Then we have that
α1(a− b+ c) + α2(c) + α3(a+ b+ c) = 0

Re writing this expression get that

a(α1 + α4) + b(α3 − α3) + c(α2 + α3)

Since this is true for all polynomials, we, taking b = 1 = a, c = 0 we see that α3 = 0, taking a = c = 0, b = 1
gives us that α1 = α3 = 0. Finally, if we take a = 1, we see that α2 = −α1 = 0. Thus we conclude
this is a linearly independant list, and so it is a basis of V ∗. We now will find a basis β = (p−1, p0, p1)
of V so that β∗ = γ. In other words, for each ϕi, ϕi(pj) = δij . First consider p−1. We require that
p−1(−1) = 1, p−1(0) = p−1(1) = 0. Choosing p−1(x) = 1

2x
2 − 1

2x will satisfy these properties. Setting
p0(x) = −x2 + 1, we see that p0(−1) = p0(1) = 0 and p0(0) = 1. Finally, setting p1(x) =

1
2x

2 + 1
2 will give

us the desired properties. Hence the basis β = ( 12x
2 − 1

2x,−x2 + 1, 1
2x

2 + 1
2x) satisifes β

∗ = γ.
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Q3: To show that B ∈ T 2(T k(V )), we must show that it is 2-linear. Thus, for T1, T2, T3 ∈ T k(V ) and α ∈ R,
we evaluate B(T1 + αT2, T3) and B(T1, T2 + αT3). We see the following:

B(T1 + αT2, T3) =

n∑
i1,...,ik=1

(T1 + αT2)(vi1 . . . vik)T3(vi1 . . . vik)

=

n∑
i1,...,ik=1

[T1(vi1 . . . vik) + αT2(vi1 . . . vik)]T3(vi1 . . . vik)

=

n∑
i1,...,ik=1

T1(vi1 . . . vik)T3(vi1 . . . vik) + αT2(vi1 . . . vik)T3(vi1 . . . vik)

=

n∑
i1,...,ik=1

T1(vi1 . . . vik)T3(vi1 . . . vik) + α

n∑
i1,...,ik

T2(vi1 . . . vik)T3(vi1 . . . vik)

= B(T1, T3) + αB(T2, T3)

By almost exactly the same computation, we see that B(T1, T2+αT3) = B(T1, T2)+αB(T1, T3). B is bilinear
and hence belongs to T 2(T k(V ))

Q3b: We now wish to show that B is an inner product on T k(V ). We have shown above that B is bi-
linear. It remains to prove it is symmetric and positive definite. First, observe the following:

B(T1, T2) =

n∑
i1,...,ik=1

T1(vi1 . . . vik)T2(vi1 . . . vik)

=

n∑
i1,...,ik=1

T2(vi1 . . . vik)T1(vi1 . . . vik)

= B(T2, T1)

Hence B is symmetric. We will now show that for any T ∈ T k(V ), B(T, T ) ≥ 0 with equality holding if and
only if T = 0. Observe:

B(T, T ) =

n∑
i1,...,ik=1

T (vi1 . . . vik)T (vi1 . . . vik)

=

n∑
i1,...,ik

[T (vi1 . . . vik)]
2 ≥ 0

We note that equality holds if and only iff for each vij , T (vi1 . . . vik) = 0, meaning that on any k-tuple of
basis vectors, T = 0. This is equivalent to saying that T is the 0-mapping.
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