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1. We are given a vector space V of dimension n, as well as the map ι : V → (V ∗)∗ defined by:

ι(v)(φ) = φ(v)

for all v ∈ V and φ ∈ V ∗.

(a) If (v1, . . . , vn) is a basis of V and (φ1, . . . , φn) is its dual basis, then we will show that
(ι(v1), . . . , ι(vn)) is the dual basis of (φ1, . . . , φn) and conclude that (ι(φ1), . . . , ι(φn)) is a basis
of (V ∗)∗.
First, let any two indices 1 ≤ i, j ≤ n be given. Then, we are given that ι(vi)(φj) = φj(vi).
Moreover, since (φ1, . . . , φn) is the dual basis of (v1, . . . , vn), we know that φj(vi) = 1 if i = j
and φj(vi) = 0 otherwise. Then, ι(vi)(φj) = 1 if i = j, and ι(vi)(φj) = 0 otherwise. Therefore,
(ι(v1), . . . , ι(vn)) is the dual basis of (φ1, . . . , φn), as required.
Finally, by Axler 3.98, it follows that (ι(v1), . . . , ι(vn)) is a basis of (V ∗)∗, as required.

(b) We will show that ι is an isomorphism from the vector space V to the vector space (V ∗)∗.
Step 1: We will check that ι is a linear map.
To do this, we need to check that ι(λ1v1 + λ2v2) = λ1ι(v1) + λ2ι(v2) for all λ1, λ2 ∈ R and all
v1, v2 ∈ V . To check that they are the same map, we can compute for all φ ∈ V ∗ that:

ι(λ1v1 + λ2v2)(φ) = φ(λ1v1 + λ2v2)

= λ1φ(v1) + λ2φ(v2) (φ is linear)

= λ1ι(v1)(φ) + λ2ι(v2)(φ)

= (λ1ι(v1) + λ2ι(v2))(φ).

Since we computed that ι(λ1v1 + λ2v2)(φ) = (λ1ι(v1) + λ2ι(v2))(φ) for all φ ∈ V ∗, we obtain
ι(λ1v1 + λ2v2) = λ1ι(v1) + λ2ι(v2). Since this is true for all λ1, λ2 ∈ R and all v1, v2 ∈ V , we
conclude that ι is a linear map, as required.
Step 2: We will check that ι is injective, and we will conclude that ι is an isomorphism between
vector spaces.
Assume for contradiction that ι is not injective. Then, since ι is a linear map, there exists some
nonzero element v ∈ V such that ι(v) = 0. Using the basis (v1, . . . , vn) of V , we can write v as
v = c1v1 + · · ·+ cnvn, where c1, . . . , cn ∈ R are not all zero. Then, we obtain:

ι(c1v1 + · · ·+ cnvn) = 0

c1ι(v1) + · · ·+ cnι(vn) = 0,

where c1, . . . , cn are not all zero. However, we proved in part (a) that (ι(v1), . . . , ι(vn)) is a basis
of (V ∗)∗, so this is not possible. Thus, by contradiction, ι is an injective linear map from V to
(V ∗)∗. Since V ∗ has the same dimension as V , and since (V ∗)∗ has the same dimension as V ∗,
we also know that (V ∗)∗ has the same dimension as V . Therefore, we conclude that ι is a vector
space isomorphism, as required.
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2. We are given that V is the vector space of polynomials p of degree at most 2 with coefficients in
R. We are also given the elements φ−1, φ0, φ1 ∈ V ∗, defined as follows:

φx(p) = p(x), x ∈ {−1, 0, 1}.

We will show that γ := (φ−1, φ0, φ1) is a basis of V ∗, and we will find a basis β of V whose dual
is γ.
Step 1: We will construct a candidate for β.
First, let us define f−1 ∈ V by f−1(x) =

1
2x(x− 1). Then, we obtain:

φ−1(f−1) = f−1(−1) φ0(f−1) = f−1(0) φ1(f−1) = f−1(1)

=
1

2
(−1)(−1− 1) =

1

2
(0)(0− 1) =

1

1
(1)(1− 1)

= 1 = 0 = 0

Next, let us define f0 ∈ V by f0(x) = −(x− 1)(x+ 1). Then, we obtain:

φ−1(f0) = f0(−1) φ0(f0) = f0(0) φ1(f0) = f0(1)

= −(−1− 1)(−1 + 1) = −(0− 1)(0 + 1) = −(1− 1)(1 + 1)

= 0 = 1 = 0

Next, let us define f1 ∈ V by f1(x) =
1
2x(x+ 1). Then, we obtain:

φ−1(f1) = f1(−1) φ0(f1) = f1(0) φ1(f1) = f1(1)

=
1

2
(−1)(−1 + 1) =

1

2
(0)(0 + 1) =

1

2
(1)(1 + 1)

= 0 = 0 = 1

To summarize our results, for all i, j ∈ {−1, 0, 1}, we have φi(fj) = 1 if i = j, and φi(fj) = 0
otherwise. Then, let us define β := (f−1, f0, f1). If we prove that β is a basis for V , then the
computations above show that γ is the dual basis for β.
Step 2: We will verify that β is a basis for V .
First, we will check that β is linearly independent. Assume for contradiction that β is linearly
dependent. Then, there exist c−1, c0, c1 ∈ R, not all zero, such that c−1f−1 + c0f0 + c1f1 = 0.
As a result:

c−1 ·
1

2
x(x− 1) + c0 · (−(x− 1)(x+ 1)) + c1 ·

1

2
x(x+ 1) = 0

c−1 · (
1

2
x2 − 1

2
x) + c0 · (−x2 + 1) + c1 · (

1

2
x2 +

1

2
x) = 0

(
1

2
c−1 − c0 +

1

2
c1)x

2 + (−1

2
c−1 +

1

2
c1)x+ c0 = 0x2 + 0x+ 0

Comparing coefficients on both sides, we obtain the following system of equations:

1

2
c−1 − c0 +

1

2
c1 = 0 (1)

−1

2
c−1 +

1

2
c1 = 0 (2)

c0 = 0 (3)
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Adding equations (1) and (2) together, we obtain −c0 + c1 = 0. Since equation (3) gives us
c0 = 0, we can plug this in to obtain c1 = 0. Then, plugging c1 = 0 into equation (2) yields
−1

2c−1 = 0, so c−1 = 0. Overall, we obtain c−1 = c0 = c1 = 0, contradicting our condition that
c−1, c0, c1 are not all zero. Thus, by contradiction, β is linearly independent in V .
Next, since (1, x, x2) is a basis for V , we know that V has a dimension of 3. This is equal to
the number of elements in β, so β is a basis for V , as required. Combining this with Step 1, we
obtain that γ is the dual basis of β, as required. Finally, it follows from Axler 3.98 that γ is a
basis of V ∗, as required.
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3. We are given an n-dimensional vector space V with a basis (v1, . . . , vn). We are also given k ∈ N.
Then, we define B : T k(V )× T k(V )→ R as follows:

B(T1, T2) :=
n∑

i1,...,ik=1

T1(vi1 , . . . , vik)T2(vi1 , . . . , vik).

(a) We will show that B ∈ T 2(T k(V )); in other words, we will show that B is a bilinear map on
T k(V ).
Step 1: First, we will show that B(λS1 + µT1, T2) = λB(S1, T2) + µB(T1, T2) for all λ, µ ∈ R
and all S1, T1, T2 ∈ T k(V ):

B(λS1 + µT1, T2) =
n∑

i1,...,ik=1

(λS1 + µT1)(vi1 , . . . , vik)T2(vi1 , . . . , vik)

=

n∑
i1,...,ik=1

(λS1(vi1 , . . . , vik)T2(vi1 , . . . , vin) + µT1(vi1 , . . . , vik)T2(vi1 , . . . , vin))

= λ

n∑
i1,...,ik=1

S1(vi1 , . . . , vik)T2(vi1 , . . . , vin) + µ

n∑
i1,...,ik=1

T1(vi1 , . . . , vik)T2(vi1 , . . . , vik)

= λB(S1, T2) + µB(T1, T2),

as desired.
Step 2: Next, we will show that B(T1, λS2 + µT2) = λB(T1, S2) + µB(T1, T2) for all λ, µ ∈ R
and all T1, S2, T2 ∈ T k(V ):

B(T1, λS2 + µT2) =

n∑
i1,...,ik=1

T1(vi1 , . . . , vik)(λS2 + µT2)(vi1 , . . . , vik)

=

n∑
i1,...,ik=1

(λT1(vi1 , . . . , vik)S2(vi1 , . . . , vik) + µT1(vi1 , . . . , vik)T2(vi1 , . . . , vik))

= λ

n∑
i1,...,ik=1

T1(vi1 , . . . , vik)S2(vi1 , . . . , vik) + µ

n∑
i1,...,ik=1

T1(vi1 , . . . , vik)T2(vi1 , . . . , vik)

= λB(T1, S2) + µB(T1, T2),

as desired.
From these two steps, we conclude that B is a bilinear map on T k(V ), as required.
(b) We will show that B is an inner product.
Step 1: We will show that B is symmetric. In other words, for all T1, T2 ∈ T k(V ), we will show
that B(T1, T2) = B(T2, T1) as follows:

B(T1, T2) =

n∑
i1,...,ik=1

T1(vi1 , . . . , vik)T2(vi1 , . . . , vik)

=

n∑
i1,...,ik=1

T2(vi1 , . . . , vik)T1(vi1 , . . . , vik) (Multiplication of reals is commutative)

= B(T2, T1),
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as desired.
Step 2: For all T ∈ T k(V ), we will verify that B(T, T ) ≥ 0 as follows:

B(T, T ) =
n∑

i1,...,ik=1

T (vi1 , . . . , vik)T (vi1 , . . . , vik)

=
n∑

i1,...,ik=1

[T (vi1 , . . . , vik)]
2

≥
n∑

i1,...,ik=1

0

= 0,

as desired.
Step 3: For all T ∈ T k(V ), we will show that B(T, T ) = 0 if and only if T = 0.
For the ”⇐” direction, suppose that T = 0. Then, we obtain:

B(T, T ) =
n∑

i1,...,ik=1

T (vi1 , . . . , vik)T (vi1 , . . . , vik)

=

n∑
i1,...,ik=1

0 · 0

= 0.

Thus, B(T, T ) = 0 if T = 0.
Next, for the ”⇒” direction, suppose that B(T, T ) = 0. Then, we obtain:

B(T, T ) = 0
n∑

i1,...,ik=1

T (vi1 , . . . , vik)T (vi1 , . . . , vik) = 0

n∑
i1,...,ik=1

[T (vi1 , . . . , vik)]
2 = 0

Whenever a sum of squares equals zero, each individual square must equal zero. As a result, we
obtain T (vi1 , . . . , vik) = 0 for all 1 ≤ i1, . . . , ik ≤ n.
Next, let u1, . . . , uk be picked arbitrarily from V . Then, using the basis (v1, . . . , vn) of V , we can
write u1, . . . , uk as:

uj =

n∑
ij=1

cj,ijvij , 1 ≤ j ≤ k.
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Then, we can verify that T (u1, . . . , uk) = 0 as follows:

T (u1, . . . , uk) = T

( n∑
i1=1

c1,i1vi1 ,
n∑

i2=1

c2,i2vi2 , . . . ,
n∑

ik=1

ck,ikvik

)

=
n∑

i1=1

c1,i1T

(
vi1 ,

n∑
i2=1

c2,i2vi2 , . . . ,
n∑

ik=1

ck,ikvik

)
(Since T is k-linear)

=

n∑
i1=1

c1,i1

n∑
i2=1

c2,i2T

(
vi1 , vi2 , . . . ,

n∑
ik=1

ck,iKvik

)
(Since T is k-linear)

= · · ·

=
n∑

i1=1

c1,i1

n∑
i2=1

c2,i2 · · ·
n∑

ik=1

ck,ikT (vi1 , vi2 , . . . , vik)

=

n∑
i1=1

c1,i1

n∑
i2=1

c2,i2 · · ·
n∑

ik=1

ck,ik · 0

= 0.

Since this is true for all u1, . . . , uk ∈ V , we conclude that T = 0. This completes our proof that
B(T, T ) = 0 if and only if T = 0.
Overall, since we know from part (a) that B is bilinear, and since we proved the other required
properties in Steps 1, 2, and 3, we conclude that B is an inner product, as required.
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Notes on intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions.
(Note: This section was not submitted for grading.)

1. This problem can be solved by tracing definitions and using standard linear algebra techniques.

2. For this problem, the main challenge is to construct the basis β = (f−1, f0, f1) of V whose
dual is γ = (φ−1, φ0, φ1). For instance, to construct f−1, we need f−1(−1) = φ−1(f−1) = 1,
f−1(0) = φ0(f−1) = 0, and f−1(1) = φ1(f−1) = 0. Then, we know that f−1 has roots of 0 and
1. This motivates us to write f−1(x) in factored form as f−1(x) = cx(x − 1), where c is a real
constant. Finally, we plug in x = −1 to obtain 1 = f−1(−1) = c(−1)(−1−1) = 2c, so c = 1

2 . As
a result, we have constructed the basis element f−1(x) =

1
2x(x − 1). This same procedure also

allows us to construct f0 and f1. Afterwards, we can apply standard linear algebra techniques to
finish the problem.

3. First, part (a) can be solved by tracing definitions.
For part (b), we first perform basic computations to show that B is symmetric, that B(T, T ) ≥ 0
for all T ∈ T k(V ), and that B(T, T ) = 0 if T = 0. Then, the main challenge is to show that
T = 0 if B(T, T ) = 0. First, plugging in the definition of B(T, T ) gives us that:

n∑
i1,...,ik=1

[T (vi1 , . . . , vik)]
2 = 0,

so each individual T (vi1 , . . . , vik) is zero. Next, the key idea is that, for all u1, . . . , uk ∈ V ,
T (u1, . . . , uk) can be evaluated in terms of individual T (vi1 , . . . , vik) terms, which all equal zero.
This helps us to prove that T = 0 whenever B(T, T ) = 0, and then we are done.
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