MAT257 Assignment 11 (k-tensors) (Author's name here)

January 28, 2022

1. We are given a vector space V of dimension n, as well as the map $\iota: V \to (V^*)^*$ defined by:

$$\iota(v)(\phi) = \phi(v)$$

for all $v \in V$ and $\phi \in V^*$.

(a) If (v_1, \ldots, v_n) is a basis of V and (ϕ_1, \ldots, ϕ_n) is its dual basis, then we will show that $(\iota(v_1), \ldots, \iota(v_n))$ is the dual basis of (ϕ_1, \ldots, ϕ_n) and conclude that $(\iota(\phi_1), \ldots, \iota(\phi_n))$ is a basis of $(V^*)^*$.

First, let any two indices $1 \le i, j \le n$ be given. Then, we are given that $\iota(v_i)(\phi_j) = \phi_j(v_i)$. Moreover, since (ϕ_1, \ldots, ϕ_n) is the dual basis of (v_1, \ldots, v_n) , we know that $\phi_j(v_i) = 1$ if i = jand $\phi_j(v_i) = 0$ otherwise. Then, $\iota(v_i)(\phi_j) = 1$ if i = j, and $\iota(v_i)(\phi_j) = 0$ otherwise. Therefore, $(\iota(v_1), \ldots, \iota(v_n))$ is the dual basis of (ϕ_1, \ldots, ϕ_n) , as required.

Finally, by Axler 3.98, it follows that $(\iota(v_1), \ldots, \iota(v_n))$ is a basis of $(V^*)^*$, as required.

(b) We will show that ι is an isomorphism from the vector space V to the vector space $(V^*)^*$. **Step 1**: We will check that ι is a linear map.

To do this, we need to check that $\iota(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \iota(v_1) + \lambda_2 \iota(v_2)$ for all $\lambda_1, \lambda_2 \in \mathbb{R}$ and all $v_1, v_2 \in V$. To check that they are the same map, we can compute for all $\phi \in V^*$ that:

$$\begin{split} \iota(\lambda_1 v_1 + \lambda_2 v_2)(\phi) &= \phi(\lambda_1 v_1 + \lambda_2 v_2) \\ &= \lambda_1 \phi(v_1) + \lambda_2 \phi(v_2) \qquad (\phi \text{ is linear}) \\ &= \lambda_1 \iota(v_1)(\phi) + \lambda_2 \iota(v_2)(\phi) \\ &= (\lambda_1 \iota(v_1) + \lambda_2 \iota(v_2))(\phi). \end{split}$$

Since we computed that $\iota(\lambda_1 v_1 + \lambda_2 v_2)(\phi) = (\lambda_1 \iota(v_1) + \lambda_2 \iota(v_2))(\phi)$ for all $\phi \in V^*$, we obtain $\iota(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \iota(v_1) + \lambda_2 \iota(v_2)$. Since this is true for all $\lambda_1, \lambda_2 \in \mathbb{R}$ and all $v_1, v_2 \in V$, we conclude that ι is a linear map, as required.

Step 2: We will check that ι is injective, and we will conclude that ι is an isomorphism between vector spaces.

Assume for contradiction that ι is not injective. Then, since ι is a linear map, there exists some nonzero element $v \in V$ such that $\iota(v) = 0$. Using the basis (v_1, \ldots, v_n) of V, we can write v as $v = c_1v_1 + \cdots + c_nv_n$, where $c_1, \ldots, c_n \in \mathbb{R}$ are not all zero. Then, we obtain:

$$\iota(c_1v_1 + \dots + c_nv_n) = 0$$

$$c_1\iota(v_1) + \dots + c_n\iota(v_n) = 0,$$

where c_1, \ldots, c_n are not all zero. However, we proved in part (a) that $(\iota(v_1), \ldots, \iota(v_n))$ is a basis of $(V^*)^*$, so this is not possible. Thus, by contradiction, ι is an injective linear map from V to $(V^*)^*$. Since V^* has the same dimension as V, and since $(V^*)^*$ has the same dimension as V^* , we also know that $(V^*)^*$ has the same dimension as V. Therefore, we conclude that ι is a vector space isomorphism, as required. 2. We are given that V is the vector space of polynomials p of degree at most 2 with coefficients in \mathbb{R} . We are also given the elements $\phi_{-1}, \phi_0, \phi_1 \in V^*$, defined as follows:

$$\phi_x(p) = p(x), \qquad x \in \{-1, 0, 1\}.$$

We will show that $\gamma := (\phi_{-1}, \phi_0, \phi_1)$ is a basis of V^* , and we will find a basis β of V whose dual is γ .

Step 1: We will construct a candidate for β .

First, let us define $f_{-1} \in V$ by $f_{-1}(x) = \frac{1}{2}x(x-1)$. Then, we obtain:

$$\phi_{-1}(f_{-1}) = f_{-1}(-1) \qquad \phi_{0}(f_{-1}) = f_{-1}(0) \qquad \phi_{1}(f_{-1}) = f_{-1}(1) \\ = \frac{1}{2}(-1)(-1-1) \qquad = \frac{1}{2}(0)(0-1) \qquad = \frac{1}{1}(1)(1-1) \\ = 1 \qquad = 0 \qquad = 0$$

Next, let us define $f_0 \in V$ by $f_0(x) = -(x-1)(x+1)$. Then, we obtain:

$$\phi_{-1}(f_0) = f_0(-1) \qquad \phi_0(f_0) = f_0(0) \qquad \phi_1(f_0) = f_0(1) \\ = -(-1-1)(-1+1) \qquad = -(0-1)(0+1) \qquad = -(1-1)(1+1) \\ = 0 \qquad = 1 \qquad = 0$$

Next, let us define $f_1 \in V$ by $f_1(x) = \frac{1}{2}x(x+1)$. Then, we obtain:

$$\phi_{-1}(f_1) = f_1(-1) \qquad \phi_0(f_1) = f_1(0) \qquad \phi_1(f_1) = f_1(1) \\ = \frac{1}{2}(-1)(-1+1) \qquad = \frac{1}{2}(0)(0+1) \qquad = \frac{1}{2}(1)(1+1) \\ = 0 \qquad = 0 \qquad = 1$$

To summarize our results, for all $i, j \in \{-1, 0, 1\}$, we have $\phi_i(f_j) = 1$ if i = j, and $\phi_i(f_j) = 0$ otherwise. Then, let us define $\beta := (f_{-1}, f_0, f_1)$. If we prove that β is a basis for V, then the computations above show that γ is the dual basis for β .

Step 2: We will verify that β is a basis for V.

First, we will check that β is linearly independent. Assume for contradiction that β is linearly dependent. Then, there exist $c_{-1}, c_0, c_1 \in \mathbb{R}$, not all zero, such that $c_{-1}f_{-1} + c_0f_0 + c_1f_1 = 0$. As a result:

$$c_{-1} \cdot \frac{1}{2}x(x-1) + c_0 \cdot (-(x-1)(x+1)) + c_1 \cdot \frac{1}{2}x(x+1) = 0$$

$$c_{-1} \cdot (\frac{1}{2}x^2 - \frac{1}{2}x) + c_0 \cdot (-x^2 + 1) + c_1 \cdot (\frac{1}{2}x^2 + \frac{1}{2}x) = 0$$

$$(\frac{1}{2}c_{-1} - c_0 + \frac{1}{2}c_1)x^2 + (-\frac{1}{2}c_{-1} + \frac{1}{2}c_1)x + c_0 = 0x^2 + 0x + 0$$

Comparing coefficients on both sides, we obtain the following system of equations:

$$\frac{1}{2}c_{-1} - c_0 + \frac{1}{2}c_1 = 0 \qquad (1)$$
$$-\frac{1}{2}c_{-1} + \frac{1}{2}c_1 = 0 \qquad (2)$$
$$c_0 = 0 \qquad (3)$$

Adding equations (1) and (2) together, we obtain $-c_0 + c_1 = 0$. Since equation (3) gives us $c_0 = 0$, we can plug this in to obtain $c_1 = 0$. Then, plugging $c_1 = 0$ into equation (2) yields $-\frac{1}{2}c_{-1} = 0$, so $c_{-1} = 0$. Overall, we obtain $c_{-1} = c_0 = c_1 = 0$, contradicting our condition that c_{-1}, c_0, c_1 are not all zero. Thus, by contradiction, β is linearly independent in V.

Next, since $(1, x, x^2)$ is a basis for V, we know that V has a dimension of 3. This is equal to the number of elements in β , so β is a basis for V, as required. Combining this with Step 1, we obtain that γ is the dual basis of β , as required. Finally, it follows from Axler 3.98 that γ is a basis of V^* , as required.

3. We are given an *n*-dimensional vector space V with a basis (v_1, \ldots, v_n) . We are also given $k \in \mathbb{N}$. Then, we define $B : \mathcal{T}^k(V) \times \mathcal{T}^k(V) \to \mathbb{R}$ as follows:

$$B(T_1, T_2) := \sum_{i_1, \dots, i_k=1}^n T_1(v_{i_1}, \dots, v_{i_k}) T_2(v_{i_1}, \dots, v_{i_k}).$$

(a) We will show that $B \in \mathcal{T}^2(\mathcal{T}^k(V))$; in other words, we will show that B is a bilinear map on $\mathcal{T}^k(V)$.

Step 1: First, we will show that $B(\lambda S_1 + \mu T_1, T_2) = \lambda B(S_1, T_2) + \mu B(T_1, T_2)$ for all $\lambda, \mu \in \mathbb{R}$ and all $S_1, T_1, T_2 \in \mathcal{T}^k(V)$:

$$B(\lambda S_1 + \mu T_1, T_2) = \sum_{i_1, \dots, i_k=1}^n (\lambda S_1 + \mu T_1)(v_{i_1}, \dots, v_{i_k}) T_2(v_{i_1}, \dots, v_{i_k})$$

$$= \sum_{i_1, \dots, i_k=1}^n (\lambda S_1(v_{i_1}, \dots, v_{i_k}) T_2(v_{i_1}, \dots, v_{i_n}) + \mu T_1(v_{i_1}, \dots, v_{i_k}) T_2(v_{i_1}, \dots, v_{i_n}))$$

$$= \lambda \sum_{i_1, \dots, i_k=1}^n S_1(v_{i_1}, \dots, v_{i_k}) T_2(v_{i_1}, \dots, v_{i_n}) + \mu \sum_{i_1, \dots, i_k=1}^n T_1(v_{i_1}, \dots, v_{i_k}) T_2(v_{i_1}, \dots, v_{i_k})$$

$$= \lambda B(S_1, T_2) + \mu B(T_1, T_2),$$

as desired.

Step 2: Next, we will show that $B(T_1, \lambda S_2 + \mu T_2) = \lambda B(T_1, S_2) + \mu B(T_1, T_2)$ for all $\lambda, \mu \in \mathbb{R}$ and all $T_1, S_2, T_2 \in \mathcal{T}^k(V)$:

$$B(T_1, \lambda S_2 + \mu T_2) = \sum_{i_1, \dots, i_k=1}^n T_1(v_{i_1}, \dots, v_{i_k}) (\lambda S_2 + \mu T_2)(v_{i_1}, \dots, v_{i_k})$$

$$= \sum_{i_1, \dots, i_k=1}^n (\lambda T_1(v_{i_1}, \dots, v_{i_k}) S_2(v_{i_1}, \dots, v_{i_k}) + \mu T_1(v_{i_1}, \dots, v_{i_k}) T_2(v_{i_1}, \dots, v_{i_k}))$$

$$= \lambda \sum_{i_1, \dots, i_k=1}^n T_1(v_{i_1}, \dots, v_{i_k}) S_2(v_{i_1}, \dots, v_{i_k}) + \mu \sum_{i_1, \dots, i_k=1}^n T_1(v_{i_1}, \dots, v_{i_k}) T_2(v_{i_1}, \dots, v_{i_k})$$

$$= \lambda B(T_1, S_2) + \mu B(T_1, T_2),$$

as desired.

From these two steps, we conclude that B is a bilinear map on $\mathcal{T}^k(V)$, as required. \Box (b) We will show that B is an inner product.

Step 1: We will show that B is symmetric. In other words, for all $T_1, T_2 \in \mathcal{T}^k(V)$, we will show that $B(T_1, T_2) = B(T_2, T_1)$ as follows:

$$\begin{split} B(T_1,T_2) &= \sum_{i_1,\dots,i_k=1}^n T_1(v_{i_1},\dots,v_{i_k}) T_2(v_{i_1},\dots,v_{i_k}) \\ &= \sum_{i_1,\dots,i_k=1}^n T_2(v_{i_1},\dots,v_{i_k}) T_1(v_{i_1},\dots,v_{i_k}) \\ &= B(T_2,T_1), \end{split}$$
 (Multiplication of reals is commutative)

as desired. **Step 2**: For all $T \in \mathcal{T}^k(V)$, we will verify that $B(T,T) \ge 0$ as follows:

$$B(T,T) = \sum_{i_1,\dots,i_k=1}^n T(v_{i_1},\dots,v_{i_k})T(v_{i_1},\dots,v_{i_k})$$
$$= \sum_{i_1,\dots,i_k=1}^n [T(v_{i_1},\dots,v_{i_k})]^2$$
$$\ge \sum_{i_1,\dots,i_k=1}^n 0$$
$$= 0,$$

as desired.

Step 3: For all $T \in \mathcal{T}^k(V)$, we will show that B(T,T) = 0 if and only if T = 0. For the " \Leftarrow " direction, suppose that T = 0. Then, we obtain:

$$B(T,T) = \sum_{i_1,\dots,i_k=1}^n T(v_{i_1},\dots,v_{i_k})T(v_{i_1},\dots,v_{i_k})$$
$$= \sum_{i_1,\dots,i_k=1}^n 0 \cdot 0$$
$$= 0.$$

Thus, B(T,T) = 0 if T = 0. Next, for the " \Rightarrow " direction, suppose that B(T,T) = 0. Then, we obtain:

$$B(T,T) = 0$$

$$\sum_{i_1,\dots,i_k=1}^n T(v_{i_1},\dots,v_{i_k})T(v_{i_1},\dots,v_{i_k}) = 0$$

$$\sum_{i_1,\dots,i_k=1}^n [T(v_{i_1},\dots,v_{i_k})]^2 = 0$$

Whenever a sum of squares equals zero, each individual square must equal zero. As a result, we obtain $T(v_{i_1}, \ldots, v_{i_k}) = 0$ for all $1 \le i_1, \ldots, i_k \le n$. Next, let u_1, \ldots, u_k be picked arbitrarily from V. Then, using the basis (v_1, \ldots, v_n) of V, we can write u_1, \ldots, u_k as:

$$u_j = \sum_{i_j=1}^n c_{j,i_j} v_{i_j}, \qquad 1 \le j \le k.$$

Then, we can verify that $T(u_1, \ldots, u_k) = 0$ as follows:

$$T(u_1, \dots, u_k) = T\left(\sum_{i_1=1}^n c_{1,i_1} v_{i_1}, \sum_{i_2=1}^n c_{2,i_2} v_{i_2}, \dots, \sum_{i_k=1}^n c_{k,i_k} v_{i_k}\right)$$

$$= \sum_{i_1=1}^n c_{1,i_1} T\left(v_{i_1}, \sum_{i_2=1}^n c_{2,i_2} v_{i_2}, \dots, \sum_{i_k=1}^n c_{k,i_k} v_{i_k}\right) \quad \text{(Since T is k-linear)}$$

$$= \sum_{i_1=1}^n c_{1,i_1} \sum_{i_2=1}^n c_{2,i_2} T\left(v_{i_1}, v_{i_2}, \dots, \sum_{i_k=1}^n c_{k,i_k} v_{i_k}\right) \quad \text{(Since T is k-linear)}$$

$$= \cdots$$

$$= \sum_{i_1=1}^n c_{1,i_1} \sum_{i_2=1}^n c_{2,i_2} \cdots \sum_{i_k=1}^n c_{k,i_k} T(v_{i_1}, v_{i_2}, \dots, v_{i_k})$$

$$= \sum_{i_1=1}^n c_{1,i_1} \sum_{i_2=1}^n c_{2,i_2} \cdots \sum_{i_k=1}^n c_{k,i_k} \cdot 0$$

$$= 0.$$

Since this is true for all $u_1, \ldots, u_k \in V$, we conclude that T = 0. This completes our proof that B(T,T) = 0 if and only if T = 0.

Overall, since we know from part (a) that B is bilinear, and since we proved the other required properties in Steps 1, 2, and 3, we conclude that B is an inner product, as required.

Notes on intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions. (Note: This section was not submitted for grading.)

- 1. This problem can be solved by tracing definitions and using standard linear algebra techniques.
- 2. For this problem, the main challenge is to construct the basis $\beta = (f_{-1}, f_0, f_1)$ of V whose dual is $\gamma = (\phi_{-1}, \phi_0, \phi_1)$. For instance, to construct f_{-1} , we need $f_{-1}(-1) = \phi_{-1}(f_{-1}) = 1$, $f_{-1}(0) = \phi_0(f_{-1}) = 0$, and $f_{-1}(1) = \phi_1(f_{-1}) = 0$. Then, we know that f_{-1} has roots of 0 and 1. This motivates us to write $f_{-1}(x)$ in factored form as $f_{-1}(x) = cx(x-1)$, where c is a real constant. Finally, we plug in x = -1 to obtain $1 = f_{-1}(-1) = c(-1)(-1-1) = 2c$, so $c = \frac{1}{2}$. As a result, we have constructed the basis element $f_{-1}(x) = \frac{1}{2}x(x-1)$. This same procedure also allows us to construct f_0 and f_1 . Afterwards, we can apply standard linear algebra techniques to finish the problem.
- 3. First, part (a) can be solved by tracing definitions. For part (b), we first perform basic computations to show that B is symmetric, that $B(T,T) \ge 0$ for all $T \in \mathcal{T}^k(V)$, and that B(T,T) = 0 if T = 0. Then, the main challenge is to show that T = 0 if B(T,T) = 0. First, plugging in the definition of B(T,T) gives us that:

$$\sum_{i_1,\dots,i_k=1}^n [T(v_{i_1},\dots,v_{i_k})]^2 = 0,$$

so each individual $T(v_{i_1}, \ldots, v_{i_k})$ is zero. Next, the key idea is that, for all $u_1, \ldots, u_k \in V$, $T(u_1, \ldots, u_k)$ can be evaluated in terms of individual $T(v_{i_1}, \ldots, v_{i_k})$ terms, which all equal zero. This helps us to prove that T = 0 whenever B(T, T) = 0, and then we are done.