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1. We are given the hemisphere V := {(x, y, z) ∈ R3 : x2+y2+z2 < a2, z > 0} for some parameter
a > 0. Then, we will use the spherical coordinate transformation to express

∫
V z as an integral

over an appropriate set in R3
r,φ,θ.

First, let us define the coordinate transformation g0 : R3
r,φ,θ → R3

x,y,z by:

(x, y, z) := g0(r, φ, θ) := (r cosφ cos θ, r cosφ sin θ, r sinφ).

Then, we will find condition on (r, φ, θ) such that g0(r, φ, θ) ∈ V and such that the restriction of
g0 is 1-1.
First, in the formula (x, y, z) = (r cosφ cos θ, r cosφ sin θ, r sinφ), the input r represents the
distance from the origin, as shown in the following computation:∣∣(x, y, z)∣∣ =√x2 + y2 + z2

=
√
(r cosφ cos θ)2 + (r cosφ sin θ)2 + (r sinφ)2

=

√
r2(cos2 φ cos2 θ + cos2 φ sin2 θ + sin2 φ)

=

√
r2(cos2 φ(cos2 θ + sin2 θ) + sin2 φ)

=

√
r2(cos2 φ · 1 + sin2 φ)

=
√
r2 · 1

= |r| .

Then, since x2 + y2 + z2 < a2 for all (x, y, z) ∈ V , we need r2 < a2, so −a < r < a. Since r
represents a distance, r should also be positive. Thus, let us select the bounds 0 < r < a for r.
Next, in the formula (x, y, z) = (r cosφ cos θ, r cosφ sin θ, r sinφ), the input θ represents the
”longitude” around the hemisphere, so it is bounded as 0 < θ < 2π.
Next, the input φ represents the ”latitude” above the xy-plane, so it is bounded as −π

2 < φ < π
2 .

Additionally, all (x, y, z) ∈ V must satisfy z > 0, so the lower half of the hemisphere V is missing.
Thus, let us select the bounds 0 < φ < π

2 for φ.
Overall, we obtained the bounds 0 < r < a, 0 < φ < π

2 , and 0 < θ < 2π. Then, let us define the
open set A ⊆ R3

r,φ,θ as the open rectangle (0, a)×(0, π2 )×(0, 2π), and let us define g : A→ R3
x,y,z

to be the restriction g0|A. With the bounds that we selected, g is 1-1, and g(A) is approximately
V .
Next, we can compute g′(r, φ, θ) for all (r, φ, θ) ∈ A as follows:

g′(r, φ, θ) =


∂
∂rr cosφ cos θ

∂
∂φr cosφ cos θ

∂
∂θr cosφ cos θ

∂
∂rr cosφ sin θ

∂
∂φr cosφ sin θ

∂
∂θr cosφ sin θ

∂
∂rr sinφ

∂
∂φr sinφ

∂
∂θr sinφ


=

cosφ cos θ −r sinφ cos θ −r cosφ sin θ
cosφ sin θ −r sinφ sin θ r cosφ cos θ

sinφ r cosφ 0

 .

All entries of g′(r, φ, θ) are continuous, so g is continuously differentiable. Additionally, we can
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compute the determinant of g′(r, φ, θ) to be:

= det g′(r, φ, θ)

= (cosφ cos θ)(−r sinφ sin θ)(0)− (cosφ cos θ)(r cosφ cos θ)(r cosφ)− (−r sinφ cos θ)(cosφ sin θ)(0)
= + (−r sinφ cos θ)(r cosφ cos θ)(sinφ) + (−r cosφ sin θ)(cosφ sin θ)(r cosφ)
= − (−r cosφ sin θ)(−r sinφ sin θ)(sinφ)
= −r2 cos3 φ cos2 θ − r2 sin2 φ cosφ cos2 θ − r2 cos3 φ sin2 θ − r2 sin2 φ cosφ sin2 θ
= −r2 cosφ(cos2 φ+ sin2 φ)(cos2 θ + sin2 θ)

= −r2 cosφ.

This determinant is nonzero for all r > 0 and all 0 < φ < π
2 , so it is nonzero for all (r, φ, θ) ∈ A.

This means that g′(r, φ, θ) is invertible for all (r, φ, θ) ∈ A.
Finally, let us define f : V → R by f(x, y, z) = z; note that f is integrable as a continuous
function. Then, all conditions of the Change of Variables formula are satisfied, so we can apply
this formula to obtain:∫

V
z =

∫
V
f

=

∫
g(A)

f

=

∫
A
f(g(r, φ, θ))

∣∣det g′(r, φ, θ)∣∣
=

∫
A
f(r cosφ cos θ, r cosφ sin θ, r sinφ)

∣∣∣−r2 cosφ∣∣∣
=

∫
A
r sinφ · r2 cosφ

=

∫
A
r3 sinφ cosφ.

Therefore,
∫
V z can be rewritten as

∫
A
r3 sinφ cosφ , where A = (0, a)×(0, π2 )×(0, 2π) ⊆ R3

r,φ,θ,

as required.
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2. Let f : R2
x,y → R be defined by f(x, y) := 1

x2+y2
. Then, we will determine if f is integrable over

U1 := {(x, y) ∈ R2
x,y : 0 < x2 + y2 < 1} and over U2 := {(x, y) ∈ R2

x,y : x
2 + y2 > 1}.

Step 1: We will show that f is not integrable over U1.
Assume for contradiction that f is integrable over U1. First, let us define the polar coordinate
transformation g0 : R2

r,θ → R2
x,y by g0(r, θ) = (r cos θ, r sin θ). Then, we will find conditions on

(r, θ) such that g0(r, θ) ∈ U1 and such that the restriction of g0 is 1-1.
In the formula (x, y) = g0(r, θ) = (r cos θ, r sin θ), the input r represents the distance from the
origin, as shown in the following computation:∣∣(x, y)∣∣ =√x2 + y2

=
√
(r cos θ)2 + (r sin θ)2

=

√
r2(cos2 θ + sin2 θ)

=
√
r2 · 1

= |r| .

Then, for (x, y) to be inside U1, we need x2 + y2 < 1, so r2 < 1, so −1 < r < 1. Since r
represents a distance, r should also be positive. Thus, let us select the bounds 0 < r < 1 for r.
Next, in the formula (x, y) = (r cos θ, r sin θ), the input θ represents the angle, so it is bounded
as 0 < θ < 2π.
Overall, we obtained the bounds 0 < r < 1 and 0 < θ < 2π. Then, let us define the open set
A1 ⊆ R2

r,θ as the open rectangle (0, 1) × (0, 2π), and let us define g1 : A1 → R2
x,y to be the

restriction g0|A1 . With the bounds that we selected, g1 is 1-1, and g1(A1) is approximately U1.
Next, we can compute g′1(r, θ) for all (r, θ) ∈ A as follows:

g′1(r, θ) =

(
∂
∂rr cos θ

∂
∂θr cos θ

∂
∂rr sin θ

∂
∂θr sin θ

)

=

(
cos θ −r sin θ
sin θ r cos θ

)
.

All entries of g′1(r, θ) are continuous, so g1 is continuously differentiable. Additionally, we can
compute the determinant of g′1(r, θ) to be:

det g′1(r, θ) = (cos θ)(r cos θ)− (−r sin θ)(sin θ) = r(cos2 θ + sin2 θ) = r.

This determinant is always nonzero when r > 0, so this determinant is nonzero for all (r, θ) ∈ A1.
This means that g′1(r, θ) is invertible at all (r, θ) ∈ A1.
Finally, we assumed above that f is integrable over U1. Thus, all conditions of the Change of
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Variables formula are satisfied, so we can use this formula to obtain:∫
U1

f =

∫
g1(A1)

f

=

∫
A1

f(g1(r, θ))
∣∣det g′1(r, θ)∣∣

=

∫
A1

f(r cos θ, r sin θ)|r|

=

∫
A1

1

(r cos θ)2 + (r sin θ)2
· r

=

∫
A1

1

r2(cos2 θ + sin2 θ)
· r

=

∫
A1

1

r
.

Since 1
r is continuous whenever r > 0, we can apply Fubini’s theorem to obtain:∫

U1

f =

∫
A1

1

r

=

∫ 1

0

∫ 2π

0

1

r
dθdr

=

∫ 1

0

θ

r

∣∣∣∣θ=2π

θ=0

dr

=

∫ 1

0

2π

r
dr

= lim
t→0+

∫ 1

t

2π

r
dr

= lim
t→0+

2π ln|r|
∣∣∣∣r=1

r=t

= lim
t→0+

2π(ln 1− ln t)

= −2π lim
t→0+

ln t.

However, this limit does not exist because it diverges, so we obtain a contradiction. Thus, by
contradiction, f is not integrable over U1, as required.
Step 2: We will show that f is also not integrable over U2.
Assume for contradiction that f is integrable over U2. First, recall the coordinate transformation
g0(r, θ) = (r cos θ, r sin θ). We will find conditions on (r, θ) such that g0(r, θ) ∈ U2 and such that
the restriction of g0 is 1-1.
Similarly to Step 1, r represents the distance

∣∣(x, y)∣∣ = √
x2 + y2. This time, for (x, y) to be

inside U2, we need x2 + y2 > 1, so r > 1. Thus, we pick the bounds 1 < r < ∞. Moreover,
similarly to Step 1, the angle θ is bounded as 0 < θ < 2π.
Then, let us define the open set A2 ⊆ R2

r,θ as the open ”unbounded rectangle” (1,∞)× (0, 2π),

and let us define g2 : A2 → R2
x,y to be the restriction g0|A2 . With the bounds that we selected,

g2 is 1-1, and g2(A2) is approximately U2.

Next, similarly to Step 1, we can compute the differential of g2 to be

(
cos θ −r sin θ
sin θ r cos θ

)
, and
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we can compute det g′2(r, θ) = r > 0. Then, g2 is continuously differentiable, and g′2(r, θ) is
invertible at all (r, θ) ∈ A2.
Finally, we assumed that f is integrable over U2. Thus, all conditions of the Change of Variables
formula are satisfied, so we can apply this formula. Then, using the same calculations as in Step
1, we obtain

∫
U2
f =

∫
A2

1
r . We continue with:∫

U2

f =

∫
A2

1

r

=

∫
(1,∞)×(0,2π)

1

r

= lim
t→∞

∫
(1,t)×(0,2π)

1

r
.

Since 1
r is continuous for r > 1, we can use Fubini’s theorem to obtain:∫

U2

f = lim
t→∞

∫ t

1

∫ 2π

0

1

r
dθdr

= lim
t→∞

∫ t

1

θ

r

∣∣∣∣θ=2π

θ=0

dr

= lim
t→∞

∫ t

1

2π

r
dr

= lim
t→∞

2π ln|r|
∣∣∣∣r=t
r=1

= lim
t→∞

2π(ln t− ln 1)

= 2π lim
t→∞

ln t.

However, this limit does not exist because it diverges, so we obtain a contradiction. Thus, by
contradiction, f is also not integrable over U2, as required.
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3. We are given the set B = {(x, y) ∈ R2
x,y : x > 0, y > 0, 1 < xy < 2, x < y < 4x}. Also, let us

define f : R2
x,y → R by f(x, y) = x2y3. Then, we will compute

∫
B f .

First, let us define the open set A ⊆ R2
u,v as the open rectangle (1,

√
2)× (1, 2), and let us define

g : A→ R2
x,y by g(u, v) = (uv , uv). We can compute the differential of g to be:

g′(u, v) =

(
∂
∂u

u
v

∂
∂v

u
v

∂
∂uuv

∂
∂vuv

)

=

(
1
v − u

v2

v u

)
.

Here, all partial derivatives of g are continuous on A, so g is continuously differentiable. Moreover,
the determinant of g′ is det g′ = ( 1v )(u) − (− u

v2
)(v) = 2u

v . This determinant is always nonzero

when u ∈ (1,
√
2), so g′(u, v) is invertible for all (u, v) ∈ A.

Next, we will check that g is 1-1. Suppose that there exist two points (u1, v1), (u2, v2) ∈ A such
that g(u1, v1) = g(u2, v2). Then, we get (u1v1 , u1v1) = (u2v2 , u2v2), so:

u1
v1

=
u2
v2
, (1)

u1v1 = u2v2. (2)

Multiplying equation (2) by equation (1), we obtain u21 = u22, so
√
u21 =

√
u22. Since u1, u2 are

both positive, it follows that u1 = u2.
Dividing equation (2) by equation (1), we obtain v21 = v22, so

√
v21 =

√
v22. Since v1, v2 are both

positive, it follows that v1 = v2.
Thus, we get (u1, v1) = (u2, v2) whenever g(u1, v1) = g(u2, v2), so g is 1-1, as required.
Next, we will check that B ⊆ g(A). Let any (x, y) ∈ B be given. Then, we have x, y > 0, so

we can define (u, v) := (
√
xy,
√

y
x) ∈ R2. Since (x, y) ∈ B, we have 1 < xy < 2, so u =

√
xy

satisfies 1 < u <
√
2. Since (x, y) ∈ B, we also have x < y < 4x, so 1 < y

x < 4, so v =
√

y
x

satisfies 1 < v < 2. Thus, we have 1 < u <
√
2 and 1 < v < 2, so (u, v) ∈ A. Then, we can

compute g(u, v) to be (uv , uv) = (
√
xy√
y
x

,
√
xy ·

√
y
x) = (x, y). Therefore, for all (x, y) ∈ B, we

found (u, v) ∈ A such that g(u, v) = (x, y), so B ⊆ g(A).
Next, we will check that g(A) ⊆ B. For all (u, v) ∈ A, we have 1 < u <

√
2 and 1 < v < 2.

Then, let us define (x, y) := g(u, v) = (uv , uv). Since u, v > 0, we have x = u
v > 0 and

y = uv > 0. Since 1 < u <
√
2, we get that xy = u

v · uv = u2 satisfies 1 < xy < 2. Since
1 < v < 2, we also get that y

x = uv
u
v

= v2 satisfies 1 < y
x < 4, so x < y < 4x. Thus, we have

x > 0, y > 0, 1 < xy < 2, and x < y < 4x, so (x, y) ∈ B. As a result, g(u, v) ∈ B for all
(u, v) ∈ A, so g(A) ⊆ B. This, combined with B ⊆ g(A), gives us g(A) = B.
Finally, f is integrable as a continuous function. Thus, all of the conditions of the Change of

7



Variables formula are satisfied, so we obtain:∫
B
f =

∫
g(A)

f

=

∫
A
f(g(u, v))

∣∣det g′(u, v)∣∣
=

∫
A
f(
u

v
, uv)

∣∣∣∣2uv
∣∣∣∣

=

∫
A

(
u

v

)2

· (uv)3 · 2u
v

=

∫
A
2u6.

Since 2u6 is continuous, we can apply Fubini’s theorem to obtain:∫
B
f =

∫
A
2u6

=

∫ √2
1

∫ 2

1
2u6dvdu

=

∫ √2
1

2u6v

∣∣∣∣v=2

v=1

du

=

∫ √2
1

(4u6 − 2u6)du

=

∫ √2
1

2u6du

=
2

7
u7
∣∣∣∣u=
√
2

u=1

=
2

7
((
√
2)7 − 1)

=
16

7

√
2− 2

7
.

Therefore, we obtain

∫
B
f =

16

7

√
2− 2

7
, as required.
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4. We are given a tetrahedron T in R3
x,y,z with vertices (0, 0, 0), (1, 2, 3), (0, 1, 2), and (−1, 1, 1).

We are also given the function f(x, y, z) := x+ 2y − z. Then, we will compute
∫
T f .

First, let us define the open set A ⊆ R3
u,v,w to be the open tetrahedron with vertices (0, 0, 0),

(1, 0, 0), (0, 1, 0), and (0, 0, 1). Then, let us define g : A→ R3
x,y,z to be the linear map represented

by the matrix

1 0 −1
2 1 1
3 2 1

. By Spivak’s Theorem 2-3(2), we obtain that Dg(u, v, w) = g for

all (u, v, w) ∈ A, so:

g′(u, v, w) =

1 0 −1
2 1 1
3 2 1

 .

First, all entries of g′(u, v, w) are continuous, so g is continuously differentiable. Next, the
determinant of g′(u, v, w) can be computed as:

det g′(u, v, w) = (1)(1)(1)− (1)(2)(1)− (0)(2)(1) + (0)(1)(3) + (−1)(2)(2)− (−1)(1)(3) = −2.

This determinant is always nonzero, so g′(u, v, w) is invertible at all (u, v, w) ∈ A. This compu-
tation also shows that det g 6= 0, so g is an invertible linear map; in other words, g is 1-1.
Next, we will verify that g(A) = T . When we apply g to the vertices of the tetrahedron A, we
obtain:

g(0, 0, 0) = (0, 0, 0)T ,

g(1, 0, 0) =

1 0 −1
2 1 1
3 2 1


1
0
0

 = (1, 2, 3)T ,

g(0, 1, 0) =

1 0 −1
2 1 1
3 2 1


0
1
0

 = (0, 1, 2)T ,

g(0, 0, 1) =

1 0 −1
2 1 1
3 2 1


0
0
1

 = (−1, 1, 1)T .

Overall, g maps the vertices of A to the vertices of T , so g(A) = T , as desired.
Finally, f is integrable as a continuous function. Thus, all conditions of the Change of Variables
formula are satisfied, so we can use this formula to obtain:∫

T
f =

∫
g(A)

f

=

∫
A
f(g(u, v, w))

∣∣det g′(u, v, w)∣∣
=

∫
A
(g1(u, v, w) + 2g2(u, v, w)− g3(u, v, w))|−2|

=

∫
A
2((u− w) + 2(2u+ v + w)− (3u+ 2v + w))

=

∫
A
4u.
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Since points (u, v, w) inside the tetrahedron A are bounded under the plane u + v + w = 1, we
have the bounds 0 < u < 1, then we have the bounds 0 < v < 1− u (since u+ v < 1), then we
have the bounds 0 < w < 1− u− v (since u+ v + w < 1). As a result:∫

T
f =

∫
A
4u

=

∫ 1

0

∫ 1−u

0

∫ 1−u−v

0
4udwdvdu

=

∫ 1

0

∫ 1−u

0
4uw

∣∣∣∣w=1−u−v

w=0

dvdu

=

∫ 1

0

∫ 1−u

0
4u(1− u− v)dvdu

=

∫ 1

0

∫ 1−u

0
(4u− 4u2 − 4uv)dvdu

=

∫ 1

0
(4uv − 4u2v − 2uv2)

∣∣∣∣v=1−u

v=0

du

=

∫ 1

0
(4u(1− u)− 4u2(1− u)− 2u(1− u)2)du

=

∫ 1

0
(2u3 − 4u2 + 2u)du

= (
1

2
u4 − 4

3
u3 + u2)

∣∣∣∣u=1

u=0

=
1

2
− 4

3
+ 1

=
1

6
.

Thus, we obtain

∫
T
f =

1

6
, as required.
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5. We are given parameters 0 < a < b. Then, we construct the disk of radius a around the point
(b, 0, 0) in the xz-plane, and we construct the solid torus T by spinning this disk around the z-axis.
Then, we will compute the volume of T .
Step 1: Consider the coordinate transformation g0 : R3

r,θ,z → R3
x,y,z defined by:

(x, y, z) := g0(r, θ, z) := (r cos θ, r sin θ, z).

Then, we will use this transformation to express vol(T ) as an integral over an appropriate set in
R3
r,θ,z.

To begin, we will find conditions on (r, θ, z) such that g0(r, θ, z) ∈ T and such that the restriction
of g0 is 1-1.
First, in the formula (x, y, z) = (r cos θ, r sin θ, z), the input r represents the ”horizontal distance”
of (x, y) from the origin, as shown in the following computation:∣∣(x, y)∣∣ =√x2 + y2

=
√
(r cos θ)2 + (r sin θ)2

=

√
r2(cos2 θ + sin2 θ)

=
√
r2 · 1

= |r| .

Then, since T is constructed by spinning a disk of radius a whose centre is b units away from
the origin, we see that |r − b| represents the horizontal distance from the centre of a disk, and |z|
represents the vertical distance from the centre of a disk. Since the disk has radius a, we obtain
the condition (r − b)2 + z2 < a2.
Next, θ represents the ”longitude” of (x, y, z), so θ is bounded as 0 < θ < 2π.
Overall, we obtain the conditions (r−b)2+z2 < a2 and 0 < θ < 2π. The bound (r−b)2+z2 < a2

represents an open ball in the rz-plane, and appending the bound 0 < θ < 2π results in an open
cylinder in R3

r,θ,z. Then, let us define the open set A ⊆ R3
r,θ,z by:

A := {(r, θ, z) : (r − b)2 + z2 < a2, 0 < θ < 2π},

and let us define g : A→ R3
x,y,z to be the restriction g0|A. Under the conditions that we picked,

g is 1-1, and g(A) is approximately T .
Next, we will show that r > 0 for all (r, θ, z) ∈ A. If (r, θ, z) ∈ A, then a2 > (r−b)2+z2 ≥ (r−b)2,
so −a < r − b < a. In particular, r − b > −a, so r > b − a. Since b > a, it follows that r > 0,
as desired.
Now, we can compute g′(r, θ, z) as follows:

g′(r, θ, z) =

 ∂
∂rr cos θ

∂
∂θr cos θ

∂
∂z r cos θ

∂
∂rr sin θ

∂
∂θr sin θ

∂
∂z r sin θ

∂
∂rz

∂
∂θz

∂
∂z z


=

cos θ −r sin θ 0
sin θ r cos θ 0
0 0 1

 .

Here, all entries of g′(r, θ, z) are continuous, so g is continuously differentiable. Moreover, the
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determinant of g′(r, θ, z) can be computed as:

det g′(r, θ, z) = (cos θ)(r cos θ)(1)− (sin θ)(−r sin θ)(1)
= r(cos2 θ + sin2 θ)

= r.

This determinant is nonzero for all r > 0. Since we showed above that r > 0 for all (r, θ, z) ∈ A,
it follows that g′(r, θ, z) is invertible at all (r, θ, z) ∈ A.
Finally, let us define f1 : R3

x,y,z by f1(x, y, z) = 1; note that f1 is integrable as a continuous
function. Then, all conditions of the Change of Variables formula are satisfied, so we can use this
formula to obtain:

vol(T ) =

∫
T
f1

=

∫
g(A)

f1

=

∫
A
f1(g(r, θ, z))

∣∣det g′(r, θ, z)∣∣
=

∫
A
1 ·|r|

=

∫
A
r.

Step 2: Consider the coordinate transformation h0 : R3
R,θ,φ → R3

r,θ,z defined by:

(r, θ, z) := h0(R, θ, φ) := (R cosφ+ b, θ, R sinφ).

(Here, (R,φ) represent polar coordinates for (r, z), with r being shifted upward by b). Then, we
will use this transformation to finish computing vol(T ).
We will begin by finding conditions on (R, θ, φ) such that h0(R, θ, φ) ∈ A and such that the
restriction of h0 is 1-1.
First, for (r, θ, z) to be inside A, we have the condition:

(r − b)2 + z2 < a2

(R cosφ)2 + (R sinφ)2 < a2

R2(cos2 φ+ sin2 φ) < a2

R2 < a2.

Since R is a distance, we have R > 0, so we conclude that 0 < R < a. Moreover, θ inherits the
condition 0 < θ < 2π from A. Finally, φ also has the condition 0 < φ < 2π because φ represents
another angle.
Overall, we obtain the conditions 0 < R < a, 0 < θ < 2π, and 0 < φ < 2π. Then, let us
define the open set B ⊆ R3

R,θ,φ as the open rectangle (0, a)× (0, 2π)× (0, 2π), and let us define

h : B → R3
R,θ,φ as the restriction h0|B. Using the bounds that we picked, h is 1-1, and h(B) is

approximately A.
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Next, we can compute h′(R, θ, φ) as follows:

h′(R, θ, φ) =


∂
∂R(R cosφ+ b) ∂

∂θ (R cosφ+ b) ∂
∂φ(R cosφ+ b)

∂
∂Rθ

∂
∂θθ

∂
∂φθ

∂
∂RR sinφ ∂

∂θR sinφ ∂
∂φR sinφ


=

cosφ 0 −R sinφ
0 1 0

sinφ 0 R cosφ

 .

Here, all entries of h′(R, θ, φ) are continuous, so h is continuously differentiable. Moreover, the
determinant of h′(R, θ, φ) can be computed as:

deth′(R, θ, φ) = (R cosφ)(1)(cosφ)− (−R sinφ)(1)(sinφ)

= R(cos2 φ+ sin2 φ)

= R.

This determinant is nonzero whenever R > 0, so it is nonzero for all (R, θ, φ) ∈ B. Thus,
h′(R, θ, φ) is invertible for all (R, θ, φ) ∈ B.
Now, let us define f2 : R3

r,θ,z by f2(r, θ, z) = r; note that f2 is integrable as a continuous function.
Then, all conditions of the Change of Variables formula are satisfied, so we can use this formula
to obtain:

vol(T ) =

∫
A
r

=

∫
h(B)

f2

=

∫
B
f2(h(R, θ, φ))

∣∣deth′(R, θ, φ)∣∣
=

∫
B
f2(R cosφ+ b, θ, R sinφ)|R|

=

∫
B
(R cosφ+ b) ·R

=

∫
B
(R2 cosφ+ bR).
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Since R2 cosφ+ bR is a continuous function, we can apply Fubini’s theorem to obtain:

vol(T ) =

∫ a

0

∫ 2π

0

∫ 2π

0
(R2 cosφ+ bR)dφdθdR

=

∫ a

0

∫ 2π

0
(R2 sinφ+ bRφ)

∣∣∣∣φ=2π

φ=0

dθdR

=

∫ a

0

∫ 2π

0
((0R2 + 2πbR)− (0R2 + 0bR))dθdR

=

∫ a

0

∫ 2π

0
2πbRdθdR

=

∫ a

0
2πbRθ

∣∣∣∣θ=2π

θ=0

dR

=

∫ a

0
4π2bRdR

= 2π2bR2

∣∣∣∣R=a

R=0

= 2π2ba2.

Thus, the volume of T is 2π2ba2 .
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Notes on Intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions.
(Note: This section was not submitted on Crowdmark.)
Due to the computational nature of this assignment, I will include less notes than usual.

1. In case it helps, here is a diagram to help you visualize the spherical coordinate transformation for
the hemisphere:

This question illustrates that spherical coordinates are useful for integrating over balls in R3.
This is because spherical coordinates reduce the complicated bound x2 + y2 + z2 < a2 into the
simple bound r < a. The angles φ and θ also have simple bounds (which are 0 < φ < π

2 and
0 < θ < 2π). Thus, we can use the Change of Variables formula to reduce the original problem
into an integral over a rectangle, which we solve using Fubini’s theorem.

2. We are trying to integrate over two sets U1 and U2, where U1 is a ”ball” (with its centre missing)
and U2 is the entire plane with a ball carved out. Similarly to Question 1, polar coordinate
transformations are useful for integrating over balls in R2.

3. Similarly to Questions 1 and 2, we want to integrate along a rectangle after applying Change of
Variables to switch to new coordinates (u, v). For this question, we can try to use the bounds
1 < xy < 2 and 1 < y

x < 4. To obtain a rectangle to integrate on, we need a coordinate
transformation such that u is in terms of xy and v is in terms of y

x . As suggested in the hint, the
transformation x = u

v and y = uv helps us to accomplish this.

4. Unlike Questions 1 to 3, it is difficult to transform a tetrahedron into a rectangle. Instead, our
next-best option is to transform the tetrahedron into another tetrahedron with vertices (0, 0, 0),
(1, 0, 0), (0, 1, 0), (0, 0, 1), for which its bounds of integration will be relatively easy to find. We
can do this using a transformation that maps vertices of one tetrahedron to vertices of the other
tetrahedron.

5. This question was more complex because it required two separate ”polar transformations” (at
least in my solution). Recall that the torus in the problem was constructed by revolving a disk
around an axis. Then, the first polar transformation accounts for the round trajectory of the disk,
and the second polar transformation accounts for the round disk itself.
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