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1. We are given that a function f : R → R vanishes for x < 1 and on all intervals of the form

(n− 1
3 , n+ 1

3) for all n ∈ N, yet
∫ n+2/3
n+1/3 f = (−1)n

n for all n ∈ N.

(a) We will prove that such a function f exists.
Step 1: We will find a candidate for f .
First, we defined the following bump function in class, where ε > 0 is a parameter:

βε(x) :=

e−
1

ε+x e−
1

ε−x , −ε < x < ε;

0, otherwise.

It was proven in class that this function has the following useful properties:

• It is C∞.

• It vanishes outside the interval (−ε, ε); in other words, βε(x) = 0 for all x /∈ (−ε, ε).

• It has a positive integral; in other words,
∫ ε
−ε βε > 0.

In particular, we could plug in the parameter ε := 1
6 . This lets us define the function f : R→ R

as follows:

f(x) :=
∞∑
k=1

(
(−1)k

k
· 1∫ 1/6
−1/6 β1/6

· β1/6(x− k − 1

2
)

)
, (∗)

where (−1)k

k · 1∫ 1/6
−1/6

β1/6
is a scaling coefficient.

Note that x−k− 1
2 ∈ (−1

6 ,
1
6) is a necessary condition for β1/6(x−k− 1

2) to be nonzero. Moreover,
since the positive integers are 1 unit apart from each other, there will be at most one positive
integer k such that x− k− 1

2 falls in the interval (−1
6 ,

1
6). As a result, the above summation is a

finite sum (with all but finitely many terms equal to zero), so f is well-defined.
Step 2: We will show that f(x) = 0 when x < 1 and when x ∈ (n− 1

3 , n+ 1
3) for some n ∈ N.

It suffices to show that the contrapositive is true: If f(x) 6= 0, then we will show that x ≥ 1 and
that x /∈ (n− 1

3 , n+ 1
3) for all n ∈ N. Indeed, if f(x) 6= 0, then at least one of the terms in the

summation in (∗) must be nonzero, so we obtain:

β1/6(x− k − 1

2
) 6= 0

for some k ∈ N. This means that −1
6 < x− k − 1

2 <
1
6 , giving us k + 1

3 < x < k + 2
3 . Then, we

obtain the following bounds on x:

(i) First, x > k + 1
3 > 1.

(ii) Next, for all n ∈ N such that n ≤ k, we get x > k + 1
3 ≥ n+ 1

3 , so x /∈ (n− 1
3 , n+ 1

3).

(iii) Next, for all n ∈ N such that n ≥ k + 1, we get x < k + 2
3 ≤ (n − 1) + 2

3 = n − 1
3 , so

x /∈ (n− 1
3 , n+ 1

3).

Bound (i) gives us x ≥ 1, and bounds (ii) and (iii) combined tell us that x /∈ (n − 1
3 , n + 1

3) for
all n ∈ N. Thus, if f(x) 6= 0, then x ≥ 1 and x /∈ (n − 1

3 , n + 1
3) for all n ∈ N. Then, the

contrapositive is also true: If x < 1, or if x ∈ (n− 1
3 , n+ 1

3) for some n ∈ N, then f(x) = 0, as
required.

Step 3: We will show that
∫ n+2/3
n+1/3 f = (−1)n

n for all n ∈ N.

First, for all x ∈ [n+ 1
3 , n+ 2

3 ], we have from (∗) that f(x) is a summation whose terms consist
of a scaling coefficient multiplied by β1/6(x− k− 1

2). We will show that β1/6(x− k− 1
2) = 0 for

all k not equal to n, using the following casework:
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• If k ≤ n− 1, then x− k − 1
2 ≥ (n+ 1

3)− (n− 1)− 1
2 = 5

6 >
1
6 , so x− k − 1

2 /∈ (−1
6 ,

1
6), so

β1/6(x− k − 1
2) = 0.

• If k ≥ n+ 1, then x− k− 1
2 ≤ (n+ 2

3)− (n+ 1)− 1
2 = −5

6 < −
1
6 , so x− k− 1

2 /∈ (−1
6 ,

1
6),

so β1/6(x− k − 1
2) = 0.

Thus, the summation in (∗) is reduced to the single term corresponding to k = n because all
other terms are zero. As a result:

f(x) =
(−1)n

n
· 1∫ 1/6
−1/6 β1/6

· β1/6(x− n− 1

2
)

for all x ∈ [n+ 1
3 , n+ 2

3 ]. Then, we can evaluate the following integral:∫ n+2/3

n+1/3
f =

∫ n+2/3

n+1/3

(−1)n

n
· 1∫ 1/6
−1/6 β1/6

· β1/6(x− n− 1

2
)dx

=
(−1)n

n
· 1∫ 1/6
−1/6 β1/6

·
∫ n+2/3

n+1/3
β1/6(x− n− 1

2
)dx.

Here, we use the u-substitution u = x−n− 1
2 , with du = dx. The bounds of the integral become

(n+ 1
3)− n− 1

2 = −1
6 and (n+ 2

3)− n− 1
2 = 1

6 . Then, we obtain:∫ n+2/3

n+1/3
f =

(−1)n

n
· 1∫ 1/6
−1/6 β1/6

·
∫ u=1/6

u=−1/6
β1/6(u)du

=
(−1)n

n
· 1∫ 1/6
−1/6 β1/6

·
∫ 1/6

−1/6
β1/6

=
(−1)n

n
.

Therefore, we constructed a function f : R → R that vanishes for all x < 1 and on intervals of

the form (n− 1
3 , n+ 1

3) for all n ∈ N, yet
∫ n+2/3
n+1/3 f = (−1)n

n for all n ∈ N, as required.
Step 4: We will sketch a plot of our function f below. Note that the function consists of positive
and negative bumps of decreasing size.
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(b) We will show that f is not NT-integrable.
As explained in class, it suffices to find any open cover U of R (using bounded sets) and any
partition of unity Φ of R such that f is not (U ,Φ)-integrable.
Step 1: We will construct candidates for U and Φ.
First, consider the following open cover of R using bounded, open sets:

U := {(k − 1

3
, k +

4

3
) : k ∈ Z}.

(We will explain why U covers R. First, every real number x is in between two consecutive
integers, so there exists k ∈ Z such that k ≤ x ≤ k + 1. Then, k − 1

3 < k ≤ x ≤ k + 1 < k + 4
3 ,

so x ∈ (k − 1
3 , k + 4

3). Thus, the intervals in U contain all x ∈ R, so U covers R, as desired.)
Next, for all k ∈ Z, let us define φ0

k : R → [0,∞) by φ0
k(x) := β3/4(x − k − 1

2) using the bump

function defined above. Then, φ0
k takes positive values precisely when −3

4 < x−k− 1
2 <

3
4 , which

can be rewritten as x ∈ (k − 1
4 , k + 5

4).
Next, to normalize these functions φ0

k, let us define g : R→ R by:

g(x) :=
∑
k∈Z

φ0
k(x). (∗∗)

For all x ∈ R, we have φ0
k(x) > 0 if and only if k − 1

4 < x < k + 5
4 , or x − 5

4 < k < x + 1
4 .

Since the interval (x − 5
4 , x + 1

4) has a ”length” of (x + 1
4) − (x − 5

4) = 3
2 > 1, and since all

integers are 1 unit apart, there is a positive, finite number of indices k ∈ Z such that φ0
k(x) > 0.

This shows that the summation in (∗∗) is both finite and positive, so g is both well-defined and
positive. Moreover, note that g is smooth as a sum of smooth functions.

Next, for all k ∈ Z, let us define φk : R → R by φk :=
φ0k
g ; this division is allowed since g is

positive everywhere. Moreover, since φ0
k(x) vanishes when x is outside (k − 1

4 , k + 5
4), we find

that φk also vanishes outside (k − 1
4 , k + 5

4), so suppφk ⊆ [k − 1
4 , k + 5

4 ]. Then, we will prove
that the countable collection Φ := {φk}k∈Z is a partition of unity for R subordinate to U :

• First, we will show the local finiteness property at all x ∈ R. To do this, we will show that
finitely many supports suppφk intersect the open neighbourhood (x − 1

4 , x + 1
4) around x.

Since suppφk ⊆ [k− 1
4 , k+ 5

4 ], it suffices to show that [k− 1
4 , k+ 5

4 ] intersects (x− 1
4 , x+ 1

4)
for only finitely many k. This intersection happens only if both of the following inequalities
hold at the same time:

k − 1

4
< x+

1

4
, k +

5

4
> x− 1

4
.

These give us the bounds k < x + 1
2 and k > x − 3

2 , respectively, so k ∈ (x − 3
2 , x + 1

2).
Since this is true for only finitely many integers k, this proves the local finiteness property.

• Next, we will show the ”Sum = 1” property at all x ∈ R:∑
k∈Z

φk(x) =
∑
k∈Z

φ0
k(x)

g(x)

=
1

g(x)

∑
k∈Z

φ0
k(x)

=
1

g(x)
g(x)

= 1.

This proves the ”Sum = 1” property.
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• Next, for all x ∈ R, we will show that φk(x) ∈ [0, 1] for all k ∈ Z. Since φk(x) =
φ0k(x)

g(x)

is a quotient of nonnegative quantities, it follows that φk(x) is nonnegative for all k ∈ Z.
Since we proved that

∑
k∈Z φk(x) = 1, it follows that each φk(x) is at most 1. Thus,

φk(x) ∈ [0, 1].

• Next, for all k ∈ Z, we see that φk =
φ0k
g is smooth as a quotient of smooth functions.

• Next, we will show that Φ is subordinate to U . For all k ∈ Z, we have k − 1
4 > k − 1

3 and
k + 5

4 < k + 4
3 , so:

suppφk ⊆ [k − 1

4
, k +

5

4
] ⊆ (k − 1

3
, k +

4

3
).

Thus, suppφk ⊆ (k − 1
3 , k + 4

3) for all k ∈ Z, so Φ is subordinate to U .

Overall, we proved that Φ is a partition of unity of R subordinate to U , as desired.
Step 2: We will show that

∫
φk|f | ≥ 1

k for all k ∈ N, and conclude that f is not (U ,Φ)-integrable.
First, for each k ∈ N, let any x ∈ [k + 1

3 , k + 2
3 ] be given. We have for all integers j > k that

x ≤ k+ 2
3 ≤ (j− 1) + 2

3 < j− 1
4 , so x /∈ (j− 1

4 , j+ 5
4), giving us φj(x) = 0. We also have for all

integers j < k that x ≥ k+ 1
3 ≥ (j + 1) + 1

3 > j + 5
4 , so x /∈ (j − 1

4 , j + 5
4), giving us φj(x) = 0.

Overall, φj(x) = 0 for all integers j 6= k, so the ”Sum = 1” property of Φ gives us φk(x) = 1 for
all x ∈ [k + 1

3 , k + 2
3 ]. Then, we can bound

∫
φk|f | as follows:∫

φk|f | =
∫ k− 1

4

−∞
φk|f |+

∫ k+ 1
3

k− 1
4

φk|f |+
∫ k+ 2

3

k+ 1
3

φk|f |+
∫ k+ 5

4

k+ 2
3

φk|f |+
∫ ∞
k+ 5

4

φk|f |

=

∫ k− 1
4

−∞
0 ·|f |+

∫ k+ 1
3

k− 1
4

φk · 0 +

∫ k+ 2
3

k+ 1
3

1 ·|f |+
∫ k+ 5

4

k+ 2
3

φk · 0 +

∫ ∞
k+ 5

4

0 ·|f |

=

∫ k+ 2
3

k+ 1
3

|f |

≥

∣∣∣∣∣
∫ k+ 2

3

k+ 1
3

f

∣∣∣∣∣ (Applying Assignment 7 Question 4)

=

∣∣∣∣∣(−1)k

k

∣∣∣∣∣
=

1

k
.

Thus,
∫
φk|f | ≥ 1

k for all k ∈ N, as desired.
Finally, since the harmonic series

∑∞
k=1

1
k diverges, the infinite series

∑∞
k=1

∫
φk|f | also diverges,

so f is not (U ,Φ)-integrable. In other words,
∫
R f does not exist, as required.

(c) We will find two partitions of unity Φ and Ψ of R such that the sums
∑

φ∈Φ

∫
φf and∑

ψ∈Ψ

∫
ψf absolutely converge, yet to different values.

Step 1: We will construct Φ such that
∑

φ∈Φ

∣∣∫ φf ∣∣ = ln(2).
First, using the same procedure as in part (b), it is possible to construct a partition of unity
Φ = {φk : R → [0, 1]}k∈Z such that supp(φk) ⊆ [2k − 5

4 , 2k + 5
4 ] for all k ∈ Z. (There are no

gaps between these intervals because 2k + 5
4 > 2(k + 1)− 5

4 .)
Next, for all positive integers k, we will show that

∫
φkf = − 1

2k−1 + 1
2k . For all x ∈ [2k− 2

3 , 2k+ 2
3 ],

we have for all integers j > k that x ≤ 2k+ 2
3 ≤ 2(j − 1) + 2

3 < 2j − 5
4 , so x /∈ [2j − 5

4 , 2j + 5
4 ],
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giving us φj(x) = 0. We also have for all integers j < k that x ≥ 2k− 2
3 ≥ 2(j+1)− 2

3 > 2j+ 5
4 ,

so x /∈ [2j − 5
4 , 2j + 5

4 ], giving us φj(x) = 0. Overall, φj(x) = 0 for all integers j 6= k, so the
”Sum = 1” property of Φ gives us φk = 1 for all x ∈ [2k − 2

3 , 2k + 2
3 ]. Then, we can evaluate∫

φkf as follows:

=

∫
φkf

=

∫ 2k− 5
4

−∞
φkf +

∫ 2k− 2
3

2k− 5
4

φkf +

∫ 2k− 1
3

2k− 2
3

φkf +

∫ 2k+ 1
3

2k− 1
3

φkf +

∫ 2k+ 5
4

2k+ 1
3

φkf +

∫ ∞
2k+ 5

4

φkf

=

∫ 2k− 5
4

−∞
0 · f +

∫ 2k− 2
3

2k− 5
4

φk · 0 +

∫ 2k− 1
3

2k− 2
3

1 · f +

∫ 2k+ 1
3

2k− 1
3

φk · 0 +

∫ 2k+ 2
3

2k+ 1
3

1 · f +

∫ 2k+ 5
4

2k+ 2
3

φk · 0 +

∫ ∞
2k+ 5

4

0 · f

=

∫ 2k− 1
3

2k− 2
3

f +

∫ 2k+ 2
3

2k+ 1
3

f

=
(−1)2k−1

2k − 1
+

(−1)2k

2k

= − 1

2k − 1
+

1

2k
.

Next, for all non-positive integers k, we will show that
∫
φkf = 0. Since f(x) vanishes for x < 1

and for x ∈ (2
3 ,

4
3), we find that f(x) vanishes for x < 4

3 overall. Since k ≤ 0, we get 2k+ 5
4 <

4
3 ,

so f(x) vanishes for x ≤ 2k + 5
4 . Then, we can evaluate

∫
φkf as follows:∫

φkf =

∫ 2k+ 5
4

−∞
φkf +

∫ ∞
2k+ 5

4

φkf

=

∫ 2k+ 5
4

−∞
φk · 0 +

∫ ∞
2k+ 5

4

0 · f

= 0.

Therefore, we can evaluate the sum
∑

k∈Z
∣∣∫ φkf ∣∣ as follows:

∑
k∈Z

∣∣∣∣∫ φkf

∣∣∣∣ =
∑
k∈Z
k≤0

∣∣∣∣∫ φkf

∣∣∣∣+
∞∑
k=1

∣∣∣∣∫ φkf

∣∣∣∣
= 0 +

∞∑
k=1

∣∣∣∣− 1

2k − 1
+

1

2k

∣∣∣∣
=

∞∑
k=1

(
1

2k − 1
− 1

2k

)
=

(
1

1
− 1

2

)
+

(
1

3
− 1

4

)
+ · · · .

Using Taylor series, it is known that the summation above converges to ln(2), as desired.
Step 2: We will similarly construct Ψ such that

∑
ψ∈Ψ

∣∣∫ ψf ∣∣ = 2− ln(2).
First, using the same procedure as in part (b), it is possible to construct a partition of unity
Ψ = {ψk : R→ [0, 1]}k∈Z such that supp(ψk) ⊆ [2k − 1

4 , 2k + 9
4 ] for all k ∈ Z.
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Next, for all positive integers k, we will show that
∫
ψkf = 1

2k−
1

2k+1 . For all x ∈ [2k+ 1
3 , 2k+ 5

3 ],

we have for all integers j > k that x ≤ 2k+ 5
3 ≤ 2(j − 1) + 5

3 < 2j − 1
4 , so x /∈ [2j − 1

4 , 2j + 9
4 ],

giving us ψj(x) = 0. We also have for all integers j < k that x ≥ 2k+ 1
3 ≥ 2(j+1)+ 1

3 > 2j+ 9
4 ,

so x /∈ [2j − 1
4 , 2j + 9

4 ], giving us ψj(x) = 0. Overall, ψj(x) = 0 for all integers j 6= k, so the
”Sum = 1” property of Ψ gives us ψk(x) = 1 for all x ∈ [2k+ 1

3 , 2k+ 5
3 ]. Then, we can evaluate∫

ψkf as follows:

=

∫
ψkf

=

∫ 2k− 1
4

−∞
ψkf +

∫ 2k+ 1
3

2k− 1
4

ψkf +

∫ 2k+ 2
3

2k+ 1
3

ψkf +

∫ 2k+ 4
3

2k+ 2
3

ψkf +

∫ 2k+ 5
3

2k+ 4
3

ψkf +

∫ 2k+ 9
4

2k+ 5
3

ψkf +

∫ ∞
2k+ 9

4

ψkf

=

∫ 2k− 1
4

−∞
0 · f +

∫ 2k+ 1
3

2k− 1
4

ψk · 0 +

∫ 2k+ 2
3

2k+ 1
3

1 · f +

∫ 2k+ 4
3

2k+ 2
3

ψk · 0 +

∫ 2k+ 5
3

2k+ 4
3

1 · f +

∫ 2k+ 9
4

2k+ 5
3

ψk · 0 +

∫ ∞
2k+ 9

4

0 · f

=

∫ 2k+ 2
3

2k+ 1
3

f +

∫ 2k+ 5
3

2k+ 4
3

f

=
(−1)2k

2k
+

(−1)2k+1

2k + 1

=
1

2k
− 1

2k + 1
.

Next, if k = 0, we will show that
∫
ψkf = −1. Similarly to the k > 0 case, we have ψk(x) = 1

for all x ∈ [2k+ 1
3 , 2k+ 5

3 ], or x ∈ [1
3 ,

5
3 ]. Moreover, similarly to Step 1, f(x) vanishes for x < 4

3 .
Then, we can evaluate

∫
ψkf as follows:∫

ψkf =

∫ 4
3

−∞
ψkf +

∫ 5
3

4
3

ψkf +

∫ 9
4

5
3

ψkf +

∫ ∞
9
4

ψkf

=

∫ 4
3

−∞
ψk · 0 +

∫ 5
3

4
3

1 · f +

∫ 9
4

5
3

ψk · 0 +

∫ ∞
9
4

0 · f

=

∫ 5
3

4
3

f

=
(−1)1

1
= −1.

Next, for all negative integers k, we will show that
∫
ψkf = 0. We have 2k+ 9

4 ≤ 2(−1) + 9
4 < 1,

so f(x) vanishes for x ≤ 2k + 9
4 . Then, we can evaluate

∫
ψkf as follows:∫

ψkf =

∫ 2k+ 9
4

−∞
ψkf +

∫ ∞
2k+ 9

4

ψkf

=

∫ 2k+ 9
4

−∞
ψk · 0 +

∫
2k+ 9

4

0 · f

= 0.
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Therefore, we can evaluate the sum
∑

k∈Z
∣∣∫ ψkf ∣∣ as follows:

∑
k∈Z

∣∣∣∣∫ ψkf

∣∣∣∣ =
∑
k∈Z
k<0

∣∣∣∣∫ ψkf

∣∣∣∣+

∣∣∣∣∫ ψ0f

∣∣∣∣+
∞∑
k=1

∣∣∣∣∫ ψkf

∣∣∣∣
= 0 +|−1|+

∞∑
k=1

∣∣∣∣ 1

2k
− 1

2k + 1

∣∣∣∣
= 1 +

∞∑
k=1

(
1

2k
− 1

2k + 1

)
= 1 +

(
1

2
− 1

3

)
+

(
1

4
− 1

5

)
+ · · ·

= 2−
(

1

1
+

(
− 1

2
+

1

3

)
+

(
− 1

4
+

1

5

)
+ · · ·

)
.

Using Taylor series, it is known that the summation above converges to 2− ln(2), as desired.
Finally, since 2 − ln(2) 6= ln(2), we conclude from Steps 1 and 2 that

∑
k∈Z
∣∣∫ φkf ∣∣ and∑

k∈Z
∣∣∫ ψkf ∣∣ converge to different values. Thus, we constructed two partitions of unity Φ,Ψ

of R such that
∑

φ∈Φ

∫
φf and

∑
ψ∈Ψ

∫
ψf both absolutely converge, yet to different values, as

required.
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2. We are given an arbitrary subset A ⊆ Rn and a function f : A → R that is smooth at every
a ∈ A. Then, we will prove that f can be extended to a smooth function g on some open set
V ⊇ A.
Step 1: We will use a certain partition of unity of A to construct a candidate for g and V .
First, we are given that f is smooth at a for all a ∈ A. By definition, this means that there exist
an open set Ua and a smooth function ga : Ua → R such that f and ga agree on A ∩ Ua. Then,
since a ∈ Ua for all a ∈ A, the sets {Ua}a∈A form an open cover of A; let us denote this open
cover by U .
Now, let Φ = {φi : V → [0, 1]}i∈N be a partition of unity of A subordinate to U , defined on some
open neighbourhood V ⊇ A. (This is the same V on which we will extend the smooth function
f .) Since Φ is subordinate to U , it follows that for all i ∈ N, there exists some point ai ∈ A such
that suppφi ⊆ Uai .
Now, let us define g : V → R by g(x) :=

∑∞
i=1 φi(x)gai(x). By the notation ”φi(x)gai(x)”, we

mean the following function: {
φi(x)gai(x), if φi(x) > 0;

0, if φi(x) = 0.

Then, since suppφi ⊆ Uai , we have that gai(x) is well-defined whenever φi(x) > 0, so φi(x)gai(x)
is well-defined everywhere (on V ). Moreover, by the local finiteness property of Φ, we have
φi(x)gai(x) = 0 for all but finitely many i, so g(x) =

∑∞
i=1 φi(x)gai(x) is a finite sum. Thus, g

is well-defined.
Step 2: We will prove that g satisfies the required properties.
First, we will show that g is smooth as a sum of smooth functions. Formally, at all a ∈ V , by the
local finiteness property of Φ, there exists an open neighbourhood W 3 a contained in V such that
suppφi∩W 6= ∅ for only finitely many i ∈ N. In other words, there exist only finitely many i ∈ N
such that φi(x) is not flat zero over x ∈ Ui. Then, on W , the function g(x) :=

∑∞
i=1 φi(x)gai(x)

is reduced to a sum of finitely many smooth functions. As a result, all partial derivatives of g of
all orders exist and are continuous at a. This is true for all a ∈ V , so g is smooth, as required.
Next, we will prove that g agrees with f on A. For all i ∈ N and all x ∈ A, we claim that
φi(x)gai(x) = φi(x)f(x). We have the following two cases for x:

(i) If φi(x) = 0, then LS = RS = 0, and we are done.

(ii) If φi(x) 6= 0, then x ∈ suppφi ⊆ Uai . We also assumed that x ∈ A, so x ∈ A ∩ Uai . Since
gai agrees with f on A∩Uai , it follows that gai(x) = f(x), so φi(x)gai(x) = φi(x)f(x), as
desired.

In either case, we showed that φi(x)gai(x) = φi(x)f(x), as desired. As a result, we obtain for all
x ∈ A that:

g(x) =
∞∑
i=1

φi(x)gai(x) =

∞∑
i=1

φi(x)f(x) = f(x)

∞∑
i=1

φi(x).

Finally, since Φ is a partition of unity of A, and since x ∈ A, we have
∑∞

i=1 φi(x) = 1, and it
follows that g(x) = f(x).
Therefore, we constructed a smooth function g : V → R on an open set V ⊇ A such that g and
f agree on A, as required.
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Notes on Intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions.
(Note: This section was not submitted on Crowdmark.)

1. For part (a), we want to construct a function f : R→ R such that it vanishes on certain intervals
(intervals of the form (n− 1

3 , n+ 1
3)) and such that it is nonzero on other intervals (intervals of

the form (n+ 1
3 , n+ 2

3)). This motivates us to use the smooth ”bump” function βε constructed in
lecture, since the bump function is constructed to be positive in an interval (−ε, ε) and to vanish
elsewhere. Since we require f to be nonzero in multiple disjoint intervals, we have to add together
multiple bumps to construct f . Finally, since we require each bump to have a certain integral, we
must normalize each bump. This leads us to the desired formula:

f(x) :=
∞∑
k=1

(
(−1)k

k
· 1∫ 1/6
−1/6 β1/6

· β1/6(x− k − 1

2
)

)
,

where β1/6(x− k − 1
2) gives us the required bumps centred at each k + 1

2 , and (−1)k

k · 1∫ 1/6
−1/6

β1/6

normalizes the bump to have an integral of (−1)k

k .
For part (b), it suffices to prove that f is not (U ,Φ)-integrable for some convenient open cover
U of R and some convenient partition of unity Φ = {φk}k∈Z subordinate to U . This requires us
to prove that

∑
k

∫
φk|f | diverges to infinity. For convenience, we can make each function φk

”contribute weight” on exactly one of the bumps. In other words, for all k ∈ Z, we construct φk
such that φk(x) = 1 for all x ∈ [k + 1

3 , k + 2
3 ] and such that φk vanishes on all other intervals

of the form [n + 1
3 , n + 2

3 ]. Then, the resulting partition of unity is structured neatly so that we
get

∫
φk|f | ≥ 1

k from the kth bump. Finally, the series
∑∞

k=1

∫
φk|f | ≥

∑∞
k=1

1
k diverges because

the harmonic series diverges, as required. (Remark: The reason why I explicitly constructed
the partition of unity Φ in my solution is to avoid potential complications from having multiple
functions ”contribute weight” on the same bump.)
For part (c), we want

∑
φ∈Φ

∫
φf and

∑
ψ∈Ψ

∫
ψf to absolutely converge. To do this, the key

idea is to neatly arrange partitions of unity so that each function φk ”contributes weight” on two
consecutive bumps. That way, integrals of consecutive bumps will cancel out because they have
opposite signs, and we avoid the harmonic series that we obtained in part (b). There are two ways
to organize this arrangement: We can have φk contribute to the (2k − 1)th bump and the (2k)th

bump (i.e., odd-indexed before even-indexed), and we can have ψk contribute to the (2k)th bump
and the (2k + 1)th bump (i.e., even-indexed before odd-indexed). This produces two different
partitions of unity Φ and Ψ. Then, the series

∑
φ∈Φ

∫
φf and

∑
ψ∈Ψ

∫
ψf happen to absolutely

converge to different values when we compute them, so we are done.

2. We are given a local statement ”f is smooth at all a ∈ A”, and we want to prove a global
statement ”f can be extended to a smooth function g on some open set V ⊇ A”. This question
illustrates a major role of partitions of unity: Converting from local statements to global statements
by ”piecing together” the local statements. First, using the local statement ”f is smooth at all
a ∈ A”, we can construct open sets Ua around each a ∈ A on which f can be locally extended
to smooth functions ga : Ua → R. Then, we use the open cover U = {Ua}a∈A to construct a
partition of unity Φ = {φi}i∈N subordinate to that open cover. Finally, we can combine the pieces
ga, using the φi functions as weights, to produce a function g that agrees with f on the entire
set A. Since the sum of smooth functions is smooth, g is our required smooth function.
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