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1. Given a Jordan-measurable set A, and given any ε > 0, we will show that there is a compact
Jordan-measurable set C ⊆ A such that the volume of A− C is less than ε.
Step 1: We will construct a candidate for C.
First, since A is Jordan-measurable, A is also bounded. We will use the fact that A is bounded
to proved that Bd(A) is also bounded, where Bd(A) denotes the boundary of A.
Since A is bounded, there exists some radius r > 0 such that all x ∈ A satisfy |x| < r. Then, we
claim that all y ∈ Rn satisfying |y| > r are in the exterior of A. Given any y such that |y| > r,
consider the open ball B|y|−r(y) of radius |y| − r > 0 around y. Then, all z ∈ B|y|−r(y) satisfy:

|z| ≥|y| −|y − z| (Triangle inequality)

> |y| − (|y| − r) (Since z ∈ B|y|−r(y))
= r.

Thus, for all z ∈ B|y|−r(y), we get |z| > r, and it follows that z /∈ A. In other words, there exists
an open neighbourhood B|y|−r(y) around y that contains no points in A, so y is in the exterior
of A, as desired. It follows that y is not in Bd(A) whenever |y| > r. Then, the contrapositive
of this statement is also true: all points in Bd(A) must have magnitude at most r, so Bd(A) is
bounded.
Next, Bd(A) is known to be closed because the interior and exterior of A are open, and their
union forms the complement of Bd(A). Thus, Bd(A) is both closed and bounded, so by Spivak’s
Corollary 1-7, Bd(A) is compact.
Next, since A is Jordan-measurable, Bd(A) has measure zero, so there exists a countable collection
{Ui}i∈N of open rectangles of total volume less than ε which cover Bd(A). Since Bd(A) is
compact, we can extract a finite subcover {Ui}i∈I of Bd(A), where I ⊆ N is a finite indexing set.
This subcover is a subset of the initial rectangles, so its total volume remains less than ε.
Finally, let us define C := A−

⋃
i∈I Ui. Note that, by construction, C ⊆ A.

Step 2: We will show that C also satisfies the following 3 properties.
Property 1: C is bounded. Indeed, C must be bounded as a subset of the bounded set A.
Property 2: C is closed. It suffices to show that Rn − C is open. There are two ways for some
point x to be outside C = A −

⋃
i∈I Ui: We can have x ∈

⋃
i∈I Ui or x /∈ A. This gives us the

following casework:
Case 1: x ∈

⋃
i∈I Ui. Then, we have x ∈ Ui for some i ∈ I. By construction, Ui is completely

outside C, so Ui is an open neighbourhood of x contained in Rn − C.
Case 2: x /∈ A. Then, x cannot be in the interior of A, so it must be in the boundary or exterior
of A. If x is in the boundary of A, then we obtain x ∈

⋃
i∈I Ui because {Ui}i∈I is an open cover

of Bd(A), and we proceed as in Case 1. Otherwise, if x is in the exterior of A, then the exterior of
A is an open neighbourhood of x contained in Rn −A. Since C ⊆ A, it follows that the exterior
of A is an open neighbourhood of x contained in Rn − C.
Overall, we proved for all x ∈ Rn −C that there exists an open neighbourhood of x contained in
Rn − C. As a result, Rn − C is open, so C is closed, as required.
Property 3: Bd(C) has measure 0. To prove this, we begin with two Lemmas:
Lemma 1 : For any open rectangle R = (a1, b1)×· · ·× (an, bn) ⊆ Rn, we will explain why Bd(R)
has measure 0.
First, as explained in lecture, Bd(R) consists of the ”faces” of R, which are the finitely many closed
(n− 1)-dimensional rectangles at the boundaries a1, b1, . . . , an, bn of R. It was also explained in
lecture that each (n− 1)-dimensional rectangle has measure 0, since each such rectangle can be
covered with an arbitrarily thin n-dimensional rectangle of arbitrarily small volume. Thus, Bd(R)
is measure-0 as a finite union of measure-0 sets (the ”faces” of R), as desired.
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Lemma 2 : For any point x ∈ Bd(C), we will show that x ∈ Bd(Ui) for some i ∈ I.
We will prove this by proving the contrapositive: Given any x ∈ Rn such that x /∈ Bd(Ui) for all
i ∈ I, we will prove that x /∈ Bd(C). Since x is in either the interior or exterior of Ui for all i ∈ I,
there are several cases for such x:
Case 1: x is in the interior of Ui for some i ∈ I. Then, since C was defined to be A−

⋃
i∈I Ui, we

see that C contains no points in Ui. Thus, Ui is an open neighbourhood of x contained outside
C, so x is in the exterior of C, not the boundary of C.
Case 2: x is in the exterior of Ui for all i ∈ I, and x /∈ A. Then, since x is not contained in any
Ui for i ∈ I, and since {Ui}i∈I covers Bd(A), it follows that x /∈ Bd(A). Since x is also not inside
A, it follows that x is in the exterior of A. Then, the exterior of A is an open neighbourhood of
x contained outside A. Finally, since C ⊆ A by construction, the exterior of A is also an open
neighbourhood of x contained outside C. Thus, x is in the exterior of C, not the boundary of C.
Case 3: x is in the exterior of Ui for all i ∈ I, and x ∈ A. Then, similarly to Case 2, x /∈ Bd(A).
This time, since x ∈ A, it follows that x is inside the interior of A. Since we also assumed that x
is in the exterior of Ui for all i ∈ I, it follows that the intersection:

U := (interior of A) ∩
⋂
i∈I

(exterior of Ui)

contains x. Here, since I is finite, U is open as a finite intersection of open sets. Moreover, every
point in U is inside the interior of A and inside the exteriors of the rectangles in {Ui}i∈N, so every
point in U is inside A and outside the rectangles in {Ui}i∈N. In other words, every point in U is
also inside C, so U ⊆ C. Thus, U is an open neighbourhood of x contained in C, so x is in the
interior of C, not the boundary of C.
Overall, we proved that if x /∈ Bd(Ui) for all i ∈ I, then x /∈ Bd(C). Therefore, the contrapositive
is also true: If x ∈ Bd(C), then x must be in Bd(Ui) for some i ∈ I, as desired.
Now, to prove Property 3, we know from Lemma 1 that Bd(Ui) has measure 0 for all i ∈ I. Then,
the union

⋃
i∈I Bd(Ui) is also measure-0 as a finite union of measure-0 sets. Finally, Lemma 2

implies that Bd(C) ⊆
⋃

i∈I Bd(Ui), so Bd(C) is also measure-0 as a subset of a measure-0 set,
as required.
Next, using Spivak’s Corollary 1-7, it follows from Property 1 (boundedness) and Property 2
(closedness) that C is compact. Additionally, it follows from Property 1 (boundedness) and
Property 3 (Bd(C) has measure 0) that C is Jordan-measurable. Thus, C is both compact and
Jordan-measurable, so it remains to prove that A − C has a volume less than ε by proving that∫
A−C 1 exists and is less than ε.
Step 3: We will prove that

∫
A−C 1 exists.

First, we claim that all points x ∈ Bd(A − C) satisfy x ∈ Bd(A) or x ∈ Bd(C). We will prove
this by proving the contrapositive: If x /∈ Bd(A),Bd(C), then we will prove that x /∈ Bd(A−C)
using the following cases:
Case 1: x is in the interior of A and the interior of C. Then, we see that the interior of C is an
open neighbourhood of x, and this open neighbourhood is contained outside A−C because it is
contained in C. As a result, x is in the exterior of A− C, not the boundary of A− C.
Case 2: x is in the interior of A and the exterior of C. Then, let us define U to be the intersection
of the interior of A and the exterior of C. We see that U is open as a finite intersection of open
sets. Moreover, U is both contained inside A and contained outside C. Thus, U is an open
neighbourhood of x contained in A − C, so x is in the interior of A − C, not the boundary of
A− C.
Case 3: x is in the exterior of A and the interior of C. Then, x would be both outside A and
inside C, which is impossible since C ⊆ A. Thus, this case is impossible.
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Case 4: x is in the exterior of A and the exterior of C. Then, we see that the exterior of A is an
open neighbourhood of x, and this open neighbourhood is contained outside A−C because it is
contained outside A. As a result, x is in the exterior of A− C, not the boundary of A− C.
Overall, we proved in all cases that x /∈ Bd(A − C) whenever x /∈ Bd(A),Bd(C). It follows
that the contrapositive is true: All points x ∈ Bd(A − C) satisfy x ∈ Bd(A) or x ∈ Bd(C),
so Bd(A − C) ⊆ Bd(A) ∪ Bd(C). Now, recall that both A and C are Jordan-measurable, so
Bd(A) and Bd(C) have measure 0. Then, since Bd(A)∪Bd(C) is measure-0 as a finite union of
measure-0 sets, it follows that Bd(A − C) is measure-0 as a subset of a measure-0 set. Finally,
A − C is bounded because A is bounded. Therefore, A − C is Jordan-measurable, so Spivak’s
Theorem 3-9 states that

∫
A−C 1 is well-defined, as required.

Step 4: We will conclude that A− C has a total volume less than ε.
Since A − C is bounded, and since the finitely many rectangles in {Ui}i∈I are bounded, there
exists some closed rectangle R containing A − C and all rectangles in {Ui}i∈I . Then, we can
use the boundaries of the rectangles {Ui}i∈I to form cutpoints of a partition P of R. With this
construction, since the rectangles {Ui}i∈I cover A − C, every subrectangle of P that intersects
A − C must be completely contained in some rectangle of the cover {Ui}i∈I . Then, we bound
the upper sum U(χA−C , P ) as follows:

U(χA−C , P ) =
∑
S∈P

MS(χA−C) vol(S)

=
∑
S∈P

S∩(A−C)=∅

MS(χA−C) vol(S) +
∑
S∈P

S∩(A−C)6=∅

MS(χA−C) vol(S)

= 0 +
∑
S∈P

S∩(A−C)6=∅

1 · vol(S)

≤
∑
S∈P

S⊆
⋃

i∈I Ui

vol(S)

≤
∑
i∈I

∑
S∈P
S⊆Ui

vol(S)

=
∑
i∈I

vol(Ui)

< ε.

Therefore, we obtain
∫
A−C 1 =

∫
R χA−C ≤ U(χA−C , P ) < ε. (Again, the term

∫
R χA−C is

well-defined because A− C is Jordan-measurable.)
Overall, given any ε > 0, we constructed a compact Jordan-measurable set C ⊆ A such that the
volume of A− C is less than ε, as required.
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2. Given a function f : Rn → Rm such that D1,2f and D2,1f exist and are continuous, we will prove
that D1,2f = D2,1f .
Assume for contradiction that there exists some a ∈ Rn such that D1,2f(a) 6= D2,1f(a), and let us
fix a. Also assume without loss of generality that D1,2f(a) > D2,1f(a), so (D1,2f−D2,1f)(a) > 0.
Since D1,2f and D2,1f are continuous functions, their difference, D1,2f −D2,1f , is continuous.
For convenience, let D1,2f −D2,1f be denoted by the function g. Then, g is continuous, and we

assumed above that g(a) > 0. Since g is continuous, and since the interval (g(a)2 ,∞) is open,

the preimage g−1((g(a)2 ,∞)) is also open. Since g(a) > 0, we also have g(a) > g(a)
2 , which

means that a is in the open set g−1((g(a)2 ,∞)). As a result, there exists a closed rectangle R

of positive volume around a such that R ⊆ g−1((g(a)2 ,∞)); in other words, g(x) > g(a)
2 for all

x ∈ R. (We find R by first finding an open rectangle R′ such that a ∈ R′ ⊆ g−1((g(a)2 ,∞)).
Since R′ does not contain its boundaries, R′ must have positive volume to contain a, so we
shrink its boundaries slightly to obtain the closed rectangle R with positive volume such that
a ∈ R ⊆ R′ ⊆ g−1((g(a)2 ,∞))).
Now, we shall obtain a contradiction through the following two steps.
Step 1: We will prove that

∫
R g > 0. (Note that g is integrable because g is continuous.)

Since g(x) > g(a)
2 for all x ∈ R, it follows that g is greater than the constant function g(a)

2 on R.
Then, it follows from Assignment 7 Question 3 that:∫

R
g ≥

∫
R

g(a)

2
=
g(a)

2
vol(R) > 0,

so
∫
R g > 0, as desired.

Step 2: We will prove, to the contrary, that
∫
R g = 0.

First, let us split R into the Cartesian product [a1, b1] × [a2, b2] × C ⊆ R × R × Rn−2, where
the rectangle [a1, b1] ⊆ R is assigned the x1-direction, the rectangle [a2, b2] ⊆ R is assigned the
x2-direction, and the rectangle C ⊆ Rn−2 is assigned the remaining directions. Correspondingly,
we will write each point x ∈ R using the coordinates (x1, x2, x

∗) ∈ [a1, b1]× [a2, b2]× C. Then,
since D1,2f is continuous, it follows from Spivak’s Remark 2 below Theorem 3-10 that:∫

R
D1,2f =

∫
C

(∫ b1

a1

(∫ b2

a2

D1,2f(x1, x2, x
∗)dx2

)
dx1

)
dx∗

=

∫
C

(∫ b1

a1

(∫ b2

a2

∂

∂x2

∂

∂x1
f(x1, x2, x

∗)dx2

)
dx1

)
dx∗.

By the Fundamental Theorem of Calculus, we have:∫ b2

a2

∂

∂x2

∂

∂x1
f(x1, x2, x

∗)dx2 =
∂

∂x1
f(x1, x2, x

∗)

∣∣∣∣x2=b2

x2=a2

=
∂

∂x1
f(x1, b2, x

∗)− ∂

∂x1
f(x1, a2, x

∗).

This allows us to simplify
∫
RD1,2f as:∫

R
D1,2f =

∫
C

(∫ b1

a1

(
∂

∂x1
f(x1, b2, x

∗)− ∂

∂x1
f(x1, a2, x

∗)

)
dx1

)
dx∗.
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Applying the Fundamental Theorem of Calculus again, we obtain:

=

∫ b1

a1

(
∂

∂x1
f(x1, b2, x

∗)− ∂

∂x1
f(x1, a2, x

∗)

)
dx1

= (f(x1, b2, x
∗)− f(x1, a2, x∗))

∣∣∣∣x1=b1

x1=a1

= f(b1, b2, x
∗)− f(b1, a2, x∗)− f(a1, b2, x∗) + f(a1, a2, x

∗).

This allows us to simplify
∫
RD1,2f as:∫

R
D1,2f =

∫
C
(f(b1, b2, x

∗)− f(b1, a2, x∗)− f(a1, b2, x∗) + f(a1, a2, x
∗))dx∗. (∗)

Similarly, since D2,1f is continuous, it follows from Remark 2 below Theorem 3-10 that:∫
R
D2,1f =

∫
C

(∫ b2

a2

(∫ b1

a1

D2,1f(x1, x2, x
∗)dx1

)
dx2

)
dx∗

=

∫
C

(∫ b2

a2

(∫ b1

a1

∂

∂x1

∂

∂x2
f(x1, x2, x

∗)dx1

)
dx2

)
dx∗.

By the Fundamental Theorem of Calculus, we have:∫ b1

a1

∂

∂x1

∂

∂x2
f(x1, x2, x

∗)dx1 =
∂

∂x2
f(x1, x2, x

∗)

∣∣∣∣x1=b1

x1=a1

=
∂

∂x2
f(b1, x2, x

∗)− ∂

∂x2
f(a1, x2, x

∗).

This allows us to simplify
∫
RD2,1f as:∫

R
D2,1f =

∫
C

(∫ b2

a2

(
∂

∂x2
f(b1, x2, x

∗)− ∂

∂x2
f(a1, x2, x

∗)

)
dx2

)
dx∗.

Applying the Fundamental Theorem of Calculus again, we obtain:

=

∫ b2

a2

(
∂

∂x2
f(b1, x2, x

∗)− ∂

∂x2
f(a1, x2, x

∗)

)
dx2

= (f(b1, x2, x
∗)− f(a1, x2, x∗))

∣∣∣∣x2=b2

x2=a2

= f(b1, b2, x
∗)− f(b1, a2, x∗)− f(a1, b2, x∗) + f(a1, a2, x

∗).

This allows us to simplify
∫
RD2,1f as:∫

R
D2,1f =

∫
C
(f(b1, b2, x

∗)− f(b1, a2, x∗)− f(a1, b2, x∗) + f(a1, a2, x
∗))dx∗. (∗∗)

Comparing (∗) and (∗∗), we see that
∫
RD1,2f =

∫
RD2,1f , so it follows from Assignment 7

Question 1 that: ∫
R
g =

∫
R
(D1,2f −D2,1f) =

∫
R
D1,2f −

∫
R
D2,1f = 0.

Overall, we proved that
∫
R g > 0 and that

∫
R g = 0, which leads to a contradiction. Therefore,

by contradiction, D1,2f(x) = D2,1f(x) for all x ∈ Rn, as required.
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3. We are given a continuous function f : [a, b]×[c, d]→ R such that D2f is continuous. Also, let us

define F : [c, d]→ R by F (y) =
∫ b
a f(x, y)dx. Then, we will prove that F ′(y) =

∫ b
a D2f(x, y)dx.

Step 1: We will rewrite F (y) as a more convenient expression.
First, by the MAT157 Fundamental Theorem of Calculus, we have for all (x, y) ∈ R2 that∫ y
c D2f(x, t)dt = f(x, y)−f(x, c), which can be rewritten as f(x, y) =

∫ y
c D2f(x, t)dt+f(x, c).

Then, F (y) can be rewritten as:

F (y) =

∫ b

a

(∫ y

c
D2f(x, t)dt+ f(x, c)

)
dx

=

∫ b

a

(∫ y

c
D2f(x, t)dt

)
dx+

∫ b

a
f(x, c)dx. (Applying Assignment 7 Question 1)

Now, since D2f is given to be continuous, it follows from Spivak’s Remark 2 below Theorem 3-10
that: ∫ b

a

(∫ y

c
D2f(x, t)dt

)
dx =

∫
[a,b]×[c,y]

D2f =

∫ y

c

(∫ b

a
D2f(x, t)dx

)
dt.

Then, F (y) can be rewritten as:

F (y) =

∫ y

c

(∫ b

a
D2f(x, t)dx

)
dt+

∫ b

a
f(x, c)dx. (∗)

Step 2: Now, we will compute F ′(y) by taking ∂
∂y of the right-hand side of (∗).

Since the term
∫ b
a f(x, c)dx is completely independent of y, we have:

∂

∂y

∫ b

a
f(x, c)dx = 0.

Moreover, the Fundamental Theorem of Calculus gives us:

∂

∂y

∫ y

c

(∫ b

a
D2f(x, t)dx

)
dt =

∫ b

a
D2f(x, t)dx

∣∣∣∣
t=y

=

∫ b

a
D2f(x, y)dx.

Adding these two results, we obtain from (∗) that:

F ′(y) =
∂

∂y

(∫ y

c

(∫ b

a
D2f(x, t)dx

)
dt+

∫ b

a
f(x, c)dx

)
=

∫ b

a
D2f(x, y)dx.

Therefore, F ′(y) =
∫ b
a D2f(x, y)dx, as required.
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4. We are given two continuously differentiable functions g1, g2 : R2 → R such that D1g2 = D2g1.
Let us define:

f(x, y) :=

∫ x

0
g1(t, 0)dt+

∫ y

0
g2(x, t)dt.

Then, we will prove that D1f = g1. (Since g1, g2 are continuous, we already proved in Assignment
4 Question 3(a) that D2f = g2.)
First, the result of Assignment 8 Question 3 (with x swapped with y) will be useful, so we will
copy its solution (with x swapped with y) here for reference:

We are given a continuous function f : [a, b]×[c, d]→ R such that D1f is continuous. Also, let us

define F : [a, b]→ R by F (x) =
∫ d
c f(x, y)dy. Then, we will prove that F ′(x) =

∫ d
c D1f(x, y)dy.

Step 1: We will rewrite F (x) as a more convenient expression.
First, by the MAT157 Fundamental Theorem of Calculus, we have for all (x, y) ∈ R2 that∫ x
a D1f(t, y)dt = f(x, y)−f(a, y), which can be rewritten as f(x, y) =

∫ x
a D1f(t, y)dt+f(a, y).

Then, F (x) can be rewritten as:

F (x) =

∫ d

c

(∫ x

a
D1f(t, y)dt+ f(a, y)

)
dy

=

∫ d

c

(∫ x

a
D1f(t, y)dt

)
dy +

∫ d

c
f(a, y)dy. (Applying Assignment 7 Question 1)

Now, since D1f is given to be continuous, it follows from Spivak’s Remark 2 below Theorem 3-10
that: ∫ d

c

(∫ x

a
D1f(t, y)dt

)
dy =

∫
[a,x]×[c,d]

D1f =

∫ x

a

(∫ d

c
D1f(t, y)dy

)
dt.

Then, F (x) can be rewritten as:

F (x) =

∫ x

a

(∫ d

c
D1f(t, y)dy

)
dt+

∫ d

c
f(a, y)dy. (∗)

Step 2: Now, we will compute F ′(x) by taking ∂
∂x of the right-hand side of (∗).

Since the term
∫ d
c f(a, y)dy is completely independent of x, we have:

∂

∂x

∫ d

c
f(a, y)dy = 0.

Moreover, the Fundamental Theorem of Calculus gives us:

∂

∂x

∫ x

a

(∫ d

c
D1f(t, y)dy

)
dt =

∫ d

c
D1f(t, y)dy

∣∣∣∣
t=x

=

∫ d

c
D1f(x, y)dy.

Adding these two results, we obtain from (∗) that:

F ′(x) =
∂

∂x

(∫ x

a

(∫ d

c
D1f(t, y)dy

)
dt+

∫ d

c
f(a, y)dy

)
=

∫ d

c
D1f(x, y)dy.

Therefore, F ′(x) =
∫ d
c D1f(x, y)dy, as required.

Now, we are ready to prove Question 4. Recall that we defined:

f(x, y) :=

∫ x

0
g1(t, 0)dt+

∫ y

0
g2(x, t)dt,
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and we want to prove that D1f = g1.
Step 1: We will compute ∂

∂x

∫ y
0 g2(x, t)dt.

First, for all y ∈ R, let us define the function Fy : R→ R by:

Fy(x) :=

∫ y

0
g2(x, t)dt.

Then, since g2 and D1g2 are both given to be continuous, it follows from Question 3 that:

F ′y(x) =

∫ y

0
D1g2(x, t)dt.

Since we are given D1g2 = D2g1, we obtain:

F ′y(x) =

∫ y

0
D2g1(x, t)dt.

Next, by the Fundamental Theorem of Calculus, we obtain:

F ′y(x) = g1(x, y)− g1(x, 0).

Therefore, we conclude that:

∂

∂x

∫ y

0
g2(x, t)dt = F ′y(x) = g1(x, y)− g1(x, 0).

Step 2: We will compute ∂
∂x

∫ x
0 g1(t, 0)dt.

Applying the Fundamental Theorem of Calculus, we obtain:

∂

∂x

∫ x

0
g1(t, 0)dt = g1(x, 0).

Step 3: We will add these two results together to obtain:

D1f(x, y) =
∂

∂x

∫ x

0
g1(t, 0)dt+

∂

∂x

∫ y

0
g2(x, t)dt

= g1(x, 0) + (g1(x, y)− g1(x, 0))
= g1(x, y).

Since this is true for all (x, y) ∈ R2, we conclude that D1f = g1, as required.
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Notes on Intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions.
(Note: This section was not submitted on Crowdmark.)

1. For this question, we are given that A is Jordan-measurable, so A is bounded, and the boundary
of A is measure 0. With no other given information, a reasonable way to proceed is to cover the
boundary of A with rectangles {Ui}i∈I with a combined volume that is arbitrarily small, as shown
in the following diagram:

(We are allowed to use open or closed rectangles; later, we will see that open rectangles are more
useful.) Since the rectangles are arbitrarily small, they will cover an arbitrarily small portion of A.
This motivates us to pick the remaining uncovered portion of A to be C, since A−C will be the
portion of A covered by the rectangles, with an arbitrarily small volume.
Now, we need to prove that C is compact and Jordan-measurable. To be compact, C should be
bounded and closed. First, C is automatically bounded as a subset of the bounded set A. Next,
since C is surrounded by the rectangles {Ui}i∈I covering the boundary of A, we see that C is
closed if we take {Ui}i∈I to be open rectangles. After these steps, we know that C is compact
because C is bounded and closed. Now, for C to be Jordan-measurable, it should be bounded
(which we have verified), and its boundary should be measure-0. From the diagram, we see that
the boundary of C consists of some sides of the rectangles {Ui}i∈I . Since these sides are lower-
dimensional rectangles, they are each measure-0, so their union is also measure-0. As a result,
the boundary of C is measure-0, and C is bounded, so C is Jordan-measurable.
Overall, after adding several technical details, these insights help us to prove that C is compact
and Jordan-measurable and that A− C has a small enough volume, as required.

2. Since we want to apply Fubini’s theorem, we should begin by considering the integrals
∫
RD1,2f

and
∫
RD2,1f along arbitrary rectangles R. When we apply Fubini’s theorem, we can integrate

along individual directions in Rn in a carefully chosen order. First, for
∫
RD1,2f , we have D1,2f =

∂
∂x2

∂
∂x1

f , where ∂
∂x2

comes in front of ∂
∂x1

. Then, it makes sense to integrate in the x2-direction,

followed by the x1-direction. Similarly, for
∫
RD2,1f , we integrate in the x1-direction, followed by

the x2-direction. By following these steps, we can compute that D1,2f and D2,1f have the same
integral along R.
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Now, we want to use this fact to somehow obtain a contradiction if some point a ∈ Rn satisfies
D1,2f(a) 6= D2,1f(a); without loss of generality, D1,2f(a) > D2,1f(a). Since single points do not
affect integrals, it would be ideal to find a rectangle R around a such that D1,2f(x) > D2,1f(x)
for all x ∈ R. Fortunately, since D1,2f and D2,1f are continuous, this is possible (as stated by the
textbook’s hint). Then, D1,2f would have a larger integral than D2,1f along R, which contradicts
our previous work, so we are done.

3. As stated in the textbook’s hint, the key trick for this problem is to substitute f(x, y) with∫ y
c D2f(x, t)dt + f(x, c). A possible motivation to find this trick is that we want to produce

some integral one of whose endpoints is y (i.e.,
∫ y
c (stuff)dt) so that we can use the Fundamental

Theorem of Calculus to compute F ′(y). Since integration and differentiation are ”opposites”, we
can force this integral to appear by integrating the derivative D2f(x, t) along t, leading to the
trick described above. This gives us:

F ′(y) =
∂

∂y

∫ b

a

∫ y

c
D2f(x, t)dt+

∂

∂y

∫ b

a
f(x, c).

The second term is clearly zero because
∫ b
a f(x, c) is independent of y. Then, to evaluate the

first term, we must swap the
∫ b
a and the

∫ y
c to apply the Fundamental Theorem of Calculus.

Fortunately, Fubini’s theorem allows us to do so because D2f is continuous, and we are done the
problem.

4. As stated in the hint, this question requires us to apply Question 3. Then, this question consists
of direct computations, where we apply Question 3, the Fundamental Theorem of Calculus, and
D1g2 = D2g1 at appropriate points in the computations.
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