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1. We are given a rectangle A in Rn, as well as two integrable functions f, g : A→ R.
(a) First, for any partition P of A and any subrectangle S ∈ P , we will prove that:

mS(f) +mS(g) ≤ mS(f + g) and MS(f + g) ≤MS(f) +MS(g).

Then, we will conclude that:

L(f, P ) + L(g, P ) ≤ L(f + g, P ) and U(f + g, P ) ≤ U(f, P ) + U(g, P ).

Step 1: We will show that mS(f) +mS(g) ≤ mS(f + g).
For all x′ ∈ S, we have f(x′) ≥ infx∈S f(x) = mS(f) and g(x′) ≥ infx∈S g(x) = mS(g) by
definition. Adding these two inequalities, we obtain:

f(x′) + g(x′) ≥ mS(f) +mS(g)

for all x′ ∈ S. As a result, mS(f)+mS(g) is a lower bound for f(x′)+g(x′) over all x′ ∈ S. Since
mS(f + g) = infx′∈S(f(x

′) + g(x′)) is the greatest lower bound for f(x′) + g(x′) over all x′ ∈ S,
all lower bounds for f(x′) + g(x′) must be at most mS(f + g), so mS(f) +mS(g) ≤ mS(f + g)
as required.
Step 2: Using a similar argument, we will show that MS(f + g) ≤MS(f) +MS(g).
For all x′ ∈ S, we have f(x′) ≤ supx∈S f(x) = MS(f) and g(x′) ≤ supx∈S g(x) = MS(g) by
definition. Adding these two inequalities, we obtain:

f(x′) + g(x′) ≤MS(f) +MS(g)

for all x′ ∈ S. As a result, MS(f) +MS(g) is an upper bound for f(x′) + g(x′) over all x′ ∈ S.
Since MS(f+g) = supx′∈S(f(x

′)+g(x′)) is the least upper bound for f(x′)+g(x′) over all x′ ∈ S,
all upper bounds for f(x′)+ g(x′) must be at least MS(f + g), so MS(f + g) ≤MS(f)+MS(g),
as required.
Step 3: We will prove that L(f, P ) + L(g, P ) ≤ L(f + g, P ) using the following LS-RS proof:

LS = L(f, P ) + L(g, P ) RS = L(f + g, P )

=
∑
S∈P

vol(S)mS(f) +
∑
S∈P

vol(S)mS(g) =
∑
S∈P

vol(S)mS(f + g)

=
∑
S∈P

vol(S)(mS(f) +mS(g))

≤
∑
S∈P

vol(S)mS(f + g) (Applying Step 1)

= RS

Since LS ≤ RS, we conclude that L(f, P ) + L(g, P ) ≤ L(f + g, P ), as required.
Step 4: Similarly, we will prove that U(f, P )+U(g, P ) ≥ U(f + g, P ) using the following LS-RS
proof:

LS = U(f, P ) + U(g, P ) RS = U(f + g, P )

=
∑
S∈P

vol(S)MS(f) +
∑
S∈P

vol(S)MS(g) =
∑
S∈P

vol(S)MS(f + g)

=
∑
S∈P

vol(S)(MS(f) +MS(g))

≥
∑
S∈P

vol(S)MS(f + g) (Applying Step 2)

= RS
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Since LS ≥ RS, we conclude that U(f, P ) + U(g, P ) ≥ U(f + g, P ), as required.
(b) We will prove that f + g is integrable and that

∫
A(f + g) =

∫
A f +

∫
A g.

Step 1: We will prove that L(f + g) ≥ L(f)+L(g) by proving that L(f + g) > L(f)+L(g)− ε
for all ε > 0.
Let any ε > 0 be given. Then, since L(f) is the least upper bound of L(f, P ) over all partitions
P of A, L(f) − ε

2 cannot be an upper bound of L(f, P ), so there exists some partition P1 of
A such that L(f, P1) > L(f) − ε

2 . Similarly, there exists some partition P2 of A such that
L(g, P2) > L(g) − ε

2 . Then, let P be a partition that refines both P1 and P2 (as explained in
class, such a partition P exists). We obtain:

L(f + g) ≥ L(f + g, P )

≥ L(f, P ) + L(g, P ) (Applying part (a))

≥ L(f, P1) + L(g, P2) (Applying Spivak’s Lemma 3-1)

> (L(f)− ε

2
) + (L(g)− ε

2
)

= L(f) + L(g)− ε.

Thus, L(f + g) > L(f) + L(g)− ε for all ε > 0, so we conclude that L(f + g) ≥ L(f) + L(g),
as desired.
Step 2: Similarly, we will prove U(f +g) ≤ U(f)+U(g) by proving U(f +g) < U(f)+U(g)+ε
for all ε > 0.
Let any ε > 0 be given. Then, since U(f) is the greatest lower bound of U(f, P ) over all
partitions P of A, U(f) + ε

2 cannot be a lower bound of U(f, P ), so there exists some partition
P1 of A such that U(f, P1) < U(f) + ε

2 . Similarly, there exists some partition P2 of A such that
U(g, P2) > U(g) + ε

2 . Then, let P be a partition that refines both P1 and P2. We obtain:

U(f + g) ≤ U(f + g, P )

≤ U(f, P ) + U(g, P ) (Applying part (a))

≤ U(f, P1) + U(g, P2) (Applying Spivak’s Lemma 3-1)

< (U(f) +
ε

2
) + (U(g) +

ε

2
)

= U(f) + U(g) + ε.

Thus, U(f + g) < U(f) +U(g) + ε for all ε > 0, so we conclude that U(f + g) ≤ U(f) +U(g),
as desired.
Step 3: Combining the first two Steps, we will conclude that f + g is integrable and that∫
A(f + g) =

∫
A f +

∫
A g.

First, since f and g are integrable, we have L(f) = U(f) =
∫
A f and L(g) = U(g) =

∫
A g. As

a result, Step 1 implies that L(f + g) ≥ L(f) + L(g) =
∫
A f +

∫
A g, and Step 2 implies that

U(f + g) ≤ U(f) + U(g) =
∫
A f +

∫
A g. This results in the following chain of inequalities:∫

A
f +

∫
A
g ≤ L(f + g) ≤ U(f + g) ≤

∫
A
f +

∫
A
g.

Since the leftmost and rightmost expressions are equal, we get L(f+g) = U(f+g) =
∫
A f+

∫
A g.

Therefore, we conclude that f+g is integrable and that
∫
A(f+g) =

∫
A f+

∫
A g, as required.

(c) Given any constant c ∈ R, we will show that cf is integrable and
∫
A cf = c

∫
A f .
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We will prove this statement using cases on the sign of c.
Case 0: c = 0. Then, the function cf is zero everywhere. According to Spivak’s remark below
Theorem 3-3, this means that cf is integrable and that

∫
A cf =

∫
A 0 = 0 vol(A) = 0. Moreover,

c
∫
A f = 0 ·

∫
A f = 0. Since

∫
A cf and c

∫
A f are both equal to 0, we conclude that they are equal

to each other when c = 0.
Case 1: c > 0. Then, we will prove

∫
A cf = c

∫
A f using the following steps.

Step 1: Given any partition P of A and any subrectangle S ∈ P , we will prove mS(cf) ≥ cmS(f)
and MS(cf) ≤ cMS(f).
First, mS(cf) = infx∈S(cf(x)) is the greatest lower bound for cf(x) over all x ∈ S, so other
lower bounds are at most mS(cf). Moreover, for all x ∈ S, since c > 0 and f(x) ≥ mS(f), we
obtain that cf(x) ≥ cmS(f). Then, cmS(f) is another lower bound for cf(x) over all x ∈ S, so
this lower bound is at most mS(cf). Thus, mS(cf) ≥ cmS(f), as desired.
Similarly, MS(cf) = supx∈S(cf(x)) is the least upper bound for cf(x) over all x ∈ S, so other
upper bounds are at least MS(cf). Moreover, for all x ∈ S, since c > 0 and f(x) ≤ MS(f), we
obtain cf(x) ≤ cMS(f). Then, cMS(f) is another upper bound for cf(x) over all x ∈ S, so this
upper bound is at least MS(cf). Thus, MS(cf) ≤ cMS(f), as desired.
Step 2: Given any partition P of A, we will prove L(cf, P ) ≥ cL(f, P ) and U(cf, P ) ≤ cU(f, P ).
We begin with the following LS-RS proof that L(cf, P ) ≥ cL(f, P ):

LS = L(cf, P ) RS = cL(f, P )

=
∑
S∈P

vol(S)mS(cf) = c
∑
S∈P

vol(S)mS(f)

≥
∑
S∈P

vol(S)cmS(f) (Applying Step 1)

= c
∑
S∈P

vol(S)mS(f)

= RS.

Since LS ≥ RS, we obtain L(cf, P ) ≥ cL(f, P ), as desired.
Similarly, we present the following LS-RS proof that U(cf, P ) ≤ cU(f, P ):

LS = U(cf, P ) RS = cU(f, P )

=
∑
S∈P

vol(S)MS(cf) = c
∑
S∈P

vol(S)MS(f)

≤
∑
S∈P

vol(S)cMS(f) (Applying Step 1)

= c
∑
S∈P

vol(S)MS(f)

= RS.

Since LS ≤ RS, we obtain U(cf, P ) ≤ cU(f, P ), as desired.
Step 3: We will prove that

∫
A cf = c

∫
A f .

First, for all partitions P of A, the first part of Step 2 implies that L(cf) ≥ L(cf, P ) ≥ cL(f, P ),
so L(f, P ) ≤ 1

cL(cf). Then, 1
cL(cf) is an upper bound for L(f, P ) over all partitions P of A, so

it is greater than or equal to the least upper bound for L(f, P ), which is L(f). In other words,
1
cL(cf) ≥ L(f), so L(cf) ≥ cL(f). Finally, L(f) =

∫
A f because f is integrable, so we conclude

that L(cf) ≥ c
∫
A f .
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Next, for all partitions P of A, the second part of Step 2 implies U(cf) ≤ U(cf, P ) ≤ cU(f, P ),
so U(f, P ) ≥ 1

cU(cf). Then, 1
cU(cf) is a lower bound for U(f, P ) over all partitions P of A,

so it is less than or equal to the greatest lower bound for U(f, P ), which is U(f). In other
words, 1

cU(cf) ≤ U(f), so U(cf) ≤ cU(f). Finally, U(f) =
∫
A f because f is integrable, so we

conclude that U(cf) ≤ c
∫
A f .

Overall, we obtain the following chain of inequalities:

c

∫
A
f ≤ L(cf) ≤ U(cf) ≤ c

∫
A
f.

The leftmost and rightmost expressions in this chain are equal, so L(cf) = U(cf) = c
∫
A f .

Therefore, cf is integrable and
∫
A cf = c

∫
A f when c > 0, as required.

Case 2: c < 0. Then, we will prove
∫
A cf = c

∫
A f using the following steps.

Step 1: Given any partition P of A and any subrectangle S ∈ P , we will prove mS(cf) ≥ cMS(f)
and MS(cf) ≤ cmS(f).
First, mS(cf) = infx∈S(cf(x)) is the greatest lower bound for cf(x) over all x ∈ S, so other
lower bounds are at most mS(cf). Moreover, for all x ∈ S, since c < 0 and since f(x) ≤MS(f),
we obtain cf(x) ≥ cMS(f). Then, cMS(f) is another lower bound for cf(x) over all x ∈ S, so
this lower bound is at most mS(cf). Thus, mS(cf) ≥ cMS(f), as desired.
Similarly, MS(cf) = supx∈S(cf(x)) is the least upper bound for cf(x) over all x ∈ S, so other
upper bounds are at least MS(cf). Moreover, for all x ∈ S, since c < 0 and since f(x) ≥ mS(f),
we obtain cf(x) ≤ cmS(f). Then, cmS(f) is another upper bound for cf(x) over all x ∈ S, so
this upper bound is at least MS(cf). Thus, MS(cf) ≤ cmS(f), as desired.
Step 2: Given any partition P of A, we will prove L(cf, P ) ≥ cU(f, P ) and U(cf, P ) ≤ cL(f, P ).
We begin with the following LS-RS proof that L(cf, P ) ≥ cU(f, P ):

LS = L(cf, P ) RS = cU(f, P )

=
∑
S∈P

vol(S)mS(cf) = c
∑
S∈P

vol(S)MS(f)

≥
∑
S∈P

vol(S)cMS(f) (Applying Step 1)

= c
∑
S∈P

vol(S)MS(f)

= RS.

Since LS ≥ RS, we obtain L(cf, P ) ≥ cU(f, P ), as desired.
Similarly, we present the following LS-RS proof that U(cf, P ) ≤ cL(f, P ):

LS = U(cf, P ) RS = cL(f, P )

=
∑
S∈P

vol(S)MS(cf) = c
∑
S∈P

vol(S)mS(f)

≤
∑
S∈P

vol(S)cmS(f) (Applying Step 1)

= c
∑
S∈P

vol(S)mS(f)

= RS.

Since LS ≤ RS, we obtain U(cf, P ) ≤ cL(f, P ), as desired.
Step 3: We will prove that

∫
A cf = c

∫
A f .
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First, for all partitions P of A, the first part of Step 2 implies that L(cf) ≥ L(cf, P ) ≥ cU(f, P ),
so we get U(f, P ) ≥ 1

cL(cf) by dividing by c < 0. Then, 1
cL(cf) is a lower bound for U(f, P )

over all partitions P of A, so it is less than or equal to the greatest lower bound for U(f, P ), which
is U(f). In other words, 1

cL(cf) ≤ U(f), so L(cf) ≥ cU(f). Finally, U(f) =
∫
A f because f is

integrable, so we conclude that L(cf) ≥ c
∫
A f .

Similarly, for all partitions P of A, the second part of Step 2 implies U(cf) ≤ U(cf, P ) ≤ cL(f, P ),
so we get L(f, P ) ≤ 1

cU(cf) by dividing by c < 0. Then, 1
cU(cf) is an upper bound for L(f, P )

over all partitions P of A, so it is greater than or equal to the least upper bound for L(f, P ),
which is L(f). In other words, 1

cU(cf) ≥ L(f), so U(cf) ≤ cL(f). Finally, L(f) =
∫
A f because

f is integrable, so we conclude that U(cf) ≤ c
∫
A f .

Overall, we obtain the following chain of inequalities:

c

∫
A
f ≤ L(cf) ≤ U(cf) ≤ c

∫
A
f.

The leftmost and rightmost expressions in this chain are equal, so L(cf) = U(cf) = c
∫
A f .

Therefore, cf is integrable and
∫
A cf = c

∫
A f when c < 0, as required.

Overall, we proved that cf is integrable and that
∫
A cf = c

∫
A f for all possible values of c, as

required.
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2. (Note: This solution was edited to correct a minor error after it was graded.)
We are given a function f : A→ R and a partition P of A. Then, we will show that f is integrable
if and only if for each subrectangle S ∈ P the restriction f |S is integrable. If f is integrable, we
will also show that

∫
A f =

∑
S∈P

∫
S f |S .

Step 1: If f is integrable, then we will apply Spivak’s Theorem 3-3 to show for each subrectangle
S ∈ P that the restriction f |S is integrable.
Let any subrectangle S ∈ P be given. Then, let any ε > 0 be given. Since f is integrable, by
Theorem 3-3, there exists some partition P ′ of A such that U(f, P ′) − L(f, P ′) < ε. Then, let
P ′′ be a partition that refines both P and P ′ (as explained in class, such a partition must exist).
By Spivak’s Lemma 3-1, this gives us U(f, P ′′)− L(f, P ′′) ≤ U(f, P ′)− L(f, P ′) < ε.
Now, since P ′′ refines P , its cutpoints include the boundaries of S, so P ′′ can be restricted to S
to form a partition Q of S. Then, we can bound U(f |S , Q)− L(f |S , Q) as follows:

U(f |S , Q)− L(f |S , Q) =
∑
R∈Q

vol(R)MR(f)−
∑
R∈Q

vol(R)mR(f)

=
∑
R∈Q

vol(R)(MR(f)−mR(f))

=
∑
R∈P ′′
R⊆S

vol(R)(MR(f)−mR(f)) (Since Q is restriction of P ′′ onto S)

≤
∑
R∈P ′′

vol(R)(MR(f)−mR(f))

=
∑
R∈P ′′

vol(R)MR(f)−
∑
R∈P ′′

vol(R)mR(f)

= U(f, P ′′)− L(f, P ′′)
< ε.

Therefore, for all ε > 0, there exists some partition Q of S such that U(f |S , Q)−L(f |S , Q) < ε,
so by Theorem 3-3, the restriction f |S is integrable. This proof applies for all subrectangles S ∈ P ,
as required.
Step 2: If f |S is integrable for all subrectangles S ∈ P , then we will apply Theorem 3-3 to prove
that f is integrable.
Let any ε > 0 be given. Then, let N be the number of subrectangles in P . Note that N is a
finite positive integer.
Now, for all subrectangles S ∈ P , since f |S is integrable, we have L(f |S) = U(f |S) =

∫
S f |S .

Next, U(f |S) is the greatest lower bound of U(f |S , Q) over all partitions Q of S, so U(f |S)+ ε
2N

cannot be a lower bound. Thus, we can pick a partition Q1
S of S such that:

U(f |S , Q1
S) < U(f |S) +

ε

2N
=

∫
S
f |S +

ε

2N
.

Similarly, we can pick a partition Q2
S of S such that:

L(f |S , Q2
S) > L(f |S)−

ε

2N
=

∫
S
f |S −

ε

2N
.

Next, let QS be a partition of S that refines both Q1
S and Q2

S . Then, for each S ∈ P , we can
form a corresponding partition PS of A by combining the cutpoints of QS , the boundaries of S,
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and the boundaries of A into the cutpoints of PS . By construction, the restriction of PS to S is
well-defined and is a refinement of QS .
Next, let us define P ′ to be a partition that refines all PS over all S ∈ P . (Since there are finitely
many partitions PS , we can ”combine” two partitions at a time into refinements of those two
partitions, and repeating this process eventually gives a refinement of all PS .) For all S ∈ P ,
since P ′ is a refinement of PS , the restriction of P ′ to S exists and is a refinement of QS ; let us
call this restriction Q′S . Then, we can bound U(f, P ′) from above as follows:

U(f, P ′) =
∑
R∈P ′

vol(R)MR(f)

=
∑
S∈P

∑
R∈Q′

S

vol(R)MR(f)

=
∑
S∈P

U(f |S , Q′S)

≤
∑
S∈P

U(f |S , QS) (Applying Lemma 3-1)

≤
∑
S∈P

U(f |S , Q1
S) (Applying Lemma 3-1 again)

<
∑
S∈P

(

∫
S
f |S +

ε

2N
) (By construction of Q1

S)

=
∑
S∈P

∫
S
f |S +

ε

2
. (Since P has N subrectangles)

We will label this bound as (∗1). We can also bound L(f, P ′) from below as follows:

L(f, P ′) =
∑
R∈P ′

vol(R)mR(f)

=
∑
S∈P

∑
R∈Q′

S

vol(R)mR(f)

=
∑
S∈P

L(f |S , Q′S)

≥
∑
S∈P

L(f |S , QS) (Applying Lemma 3-1)

≥
∑
S∈P

L(f |S , Q2
S) (Applying Lemma 3-1 again)

>
∑
S∈P

(

∫
S
f |S −

ε

2N
) (By construction of Q2

S)

=
∑
S∈P

∫
S
f |S −

ε

2
. (Since P has N subrectangles)

We will label this bound as (∗2).
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Finally, subtracting (∗2) from (∗1), we obtain:

U(f, P ′)− L(f, P ′) <
(∑

S∈P

∫
S
f |S +

ε

2

)
−
(∑

S∈P

∫
S
f |S −

ε

2

)
=
ε

2
+
ε

2
= ε.

Therefore, for all ε > 0, there exists a partition P ′ of A such that U(f, P ′)− L(f, P ′) < ε, so f
is integrable, as required.
Step 3: Continuing from Step 2, we will prove that

∫
A f =

∑
S∈P

∫
S f |S .

According to the bound (∗1), there exist partitions P ′ of A such that U(f, P ′) becomes arbitrarily
close to

∑
S∈P

∫
S f |S , so any number above

∑
S∈P

∫
S f |S cannot be a lower bound for U(f, P ′).

Since U(f) is a lower bound for U(f, P ′), it follows that U(f) ≤
∑

S∈P
∫
S f |S .

Moreover, according to the bound (∗2), there exist partitions P ′ of A such that L(f, P ′) becomes
arbitrarily close to

∑
S∈P

∫
S f |S , so any number below

∑
S∈P

∫
S f |S cannot be an upper bound

for L(f, P ′). Since L(f) is an upper bound for L(f, P ′), it follows that L(f) ≥
∑

S∈P
∫
S f |S .

Overall, we obtain the following chain of inequalities:∑
S∈P

∫
S
f |S ≤ L(f) ≤ U(f) ≤

∑
S∈P

∫
S
f |S .

The leftmost and rightmost expressions in this chain are equal, so L(f) = U(f) =
∑

S∈P
∫
S f |S .

Therefore,
∫
A f =

∑
S∈P

∫
S f |S , as required.

Combining these three Steps, we proved that f is integrable if and only if f |S is integrable for all
subrectangles S ∈ P , and we also proved that

∫
A f =

∑
S∈P

∫
S f |S in this case, as required.
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3. We are given integrable functions f, g : A → R such that f ≤ g. Then, we will prove that∫
A f ≤

∫
A g.

Step 1: Given any partition P of A and any subrectangle S ∈ P , we will prove mS(f) ≤ mS(g).
First, since f ≤ g, we have for all x′ ∈ S that g(x′) ≥ f(x′) ≥ infx∈S f(x) = mS(f). This
means that mS(f) is a lower bound for g(x′) over all x′ ∈ S. Since mS(g) = infx′∈S g(x

′) is the
greatest lower bound for g(x′) over all x′ ∈ S, all lower bounds for g(x′) must be at most mS(g),
so we conclude that mS(g) ≥ mS(f).
Step 2: Given any partition P of A, we will prove that L(f, P ) ≤ L(g, P ) using the following
LS-RS proof:

LS = L(f, P ) RS = L(g, P )

=
∑
S∈P

vol(S)mS(f) =
∑
S∈P

vol(S)mS(g)

≤
∑
S∈P

vol(S)mS(g) (Applying Step 1)

= RS

Since LS ≤ RS, we conclude that L(f, P ) ≤ L(g, P ).
Step 3: We will conclude that

∫
A f ≤

∫
A g.

First, by Step 2, we have for all partitions P ′ of A that:

L(f, P ′) ≤ L(g, P ′) ≤ sup
P is partition of A

L(g, P ) = L(g),

so L(g) is an upper bound on L(f, P ′) over all partitions P ′ of A. Since L(f) is the supremum
of L(f, P ′) over all partitions P ′ of A, it is also the least upper bound for such L(f, P ′), so other
upper bounds for such L(f, P ′) must be at least L(f). This gives us L(g) ≥ L(f). Finally, since
f, g are integrable, we conclude that:∫

A
f = L(f) ≤ L(g) =

∫
A
g,

so
∫
A f ≤

∫
A g, as required.

10



4. Given an integrable function F : A→ R, we will prove that |F | is integrable, with
∣∣∣∫A F ∣∣∣ ≤ ∫A|F |.

First, we will need to apply the c < 0 case of Question 1 (c), so its proof is reproduced below for
reference:

Given any c < 0 and any integrable function f : A → R, we will prove
∫
A cf = c

∫
A f using

the following steps.
Step 1: Given any partition P of A and any subrectangle S ∈ P , we will prove mS(cf) ≥ cMS(f)
and MS(cf) ≤ cmS(f).
First, mS(cf) = infx∈S(cf(x)) is the greatest lower bound for cf(x) over all x ∈ S, so other
lower bounds are at most mS(cf). Moreover, for all x ∈ S, since c < 0 and since f(x) ≤MS(f),
we obtain cf(x) ≥ cMS(f). Then, cMS(f) is another lower bound for cf(x) over all x ∈ S, so
this lower bound is at most mS(cf). Thus, mS(cf) ≥ cMS(f), as desired.
Similarly, MS(cf) = supx∈S(cf(x)) is the least upper bound for cf(x) over all x ∈ S, so other
upper bounds are at least MS(cf). Moreover, for all x ∈ S, since c < 0 and since f(x) ≥ mS(f),
we obtain cf(x) ≤ cmS(f). Then, cmS(f) is another upper bound for cf(x) over all x ∈ S, so
this upper bound is at least MS(cf). Thus, MS(cf) ≤ cmS(f), as desired.
Step 2: Given any partition P of A, we will prove L(cf, P ) ≥ cU(f, P ) and U(cf, P ) ≤ cL(f, P ).
We begin with the following LS-RS proof that L(cf, P ) ≥ cU(f, P ):

LS = L(cf, P ) RS = cU(f, P )

=
∑
S∈P

vol(S)mS(cf) = c
∑
S∈P

vol(S)MS(f)

≥
∑
S∈P

vol(S)cMS(f) (Applying Step 1)

= c
∑
S∈P

vol(S)MS(f)

= RS.

Since LS ≥ RS, we obtain L(cf, P ) ≥ cU(f, P ), as desired.
Similarly, we present the following LS-RS proof that U(cf, P ) ≤ cL(f, P ):

LS = U(cf, P ) RS = cL(f, P )

=
∑
S∈P

vol(S)MS(cf) = c
∑
S∈P

vol(S)mS(f)

≤
∑
S∈P

vol(S)cmS(f) (Applying Step 1)

= c
∑
S∈P

vol(S)mS(f)

= RS.

Since LS ≤ RS, we obtain U(cf, P ) ≤ cL(f, P ), as desired.
Step 3: We will prove that

∫
A cf = c

∫
A f .

First, for all partitions P of A, the first part of Step 2 implies that L(cf) ≥ L(cf, P ) ≥ cU(f, P ),
so we get U(f, P ) ≥ 1

cL(cf) by dividing by c < 0. Then, 1
cL(cf) is a lower bound for U(f, P )

over all partitions P of A, so it is less than or equal to the greatest lower bound for U(f, P ), which
is U(f). In other words, 1

cL(cf) ≤ U(f), so L(cf) ≥ cU(f). Finally, U(f) =
∫
A f because f is

integrable, so we conclude that L(cf) ≥ c
∫
A f .
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Similarly, for all partitions P of A, the second part of Step 2 implies U(cf) ≤ U(cf, P ) ≤ cL(f, P ),
so we get L(f, P ) ≤ 1

cU(cf) by dividing by c < 0. Then, 1
cU(cf) is an upper bound for L(f, P )

over all partitions P of A, so it is greater than or equal to the least upper bound for L(f, P ),
which is L(f). In other words, 1

cU(cf) ≥ L(f), so U(cf) ≤ cL(f). Finally, L(f) =
∫
A f because

f is integrable, so we conclude that U(cf) ≤ c
∫
A f .

Overall, we obtain the following chain of inequalities:

c

∫
A
f ≤ L(cf) ≤ U(cf) ≤ c

∫
A
f.

The leftmost and rightmost expressions in this chain are equal, so L(cf) = U(cf) = c
∫
A f .

Therefore, cf is integrable and
∫
A cf = c

∫
A f when c < 0, as required.

Moreover, we will need to use the result of Question 3, so its proof is reproduced below for
reference:

Given two integrable functions f, g : A→ R such that f ≤ g, we will prove that
∫
A f ≤

∫
A g.

Step 1: Given any partition P of A and any subrectangle S ∈ P , we will prove mS(f) ≤ mS(g).
First, since f ≤ g, we have for all x′ ∈ S that g(x′) ≥ f(x′) ≥ infx∈S f(x) = mS(f). This
means that mS(f) is a lower bound for g(x′) over all x′ ∈ S. Since mS(g) = infx′∈S g(x

′) is the
greatest lower bound for g(x′) over all x′ ∈ S, all lower bounds for g(x′) must be at most mS(g),
so we conclude that mS(g) ≥ mS(f).
Step 2: Given any partition P of A, we will prove that L(f, P ) ≤ L(g, P ) using the following
LS-RS proof:

LS = L(f, P ) RS = L(g, P )

=
∑
S∈P

vol(S)mS(f) =
∑
S∈P

vol(S)mS(g)

≤
∑
S∈P

vol(S)mS(g) (Applying Step 1)

= RS

Since LS ≤ RS, we conclude that L(f, P ) ≤ L(g, P ).
Step 3: We will conclude that

∫
A f ≤

∫
A g.

First, by Step 2, we have for all partitions P ′ of A that:

L(f, P ′) ≤ L(g, P ′) ≤ sup
P is partition of A

L(g, P ) = L(g),

so L(g) is an upper bound on L(f, P ′) over all partitions P ′ of A. Since L(f) is the supremum
of L(f, P ′) over all partitions P ′ of A, it is also the least upper bound for such L(f, P ′), so other
upper bounds for such L(f, P ′) must be at least L(f). This gives us L(g) ≥ L(f). Finally, since
f, g are integrable, we conclude that:∫

A
f = L(f) ≤ L(g) =

∫
A
g,

so
∫
A f ≤

∫
A g, as required.

Now, we will solve Question 4 using the following steps.
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Step 1: For any partition P of A, and for any subrectangle S ∈ P , we will prove that
MS(|F |)−mS(|F |) ≤MS(F )−mS(F ).
Let us consider the following cases for F :
Case 1: F (x) ≥ 0 for all x ∈ S. Then,

∣∣F (x)∣∣ = F (x) for all x ∈ S, so MS(|F |) = MS(F ) and
mS(|F |) = mS(F ). This directly results in MS(|F |)−mS(|F |) =MS(F )−mS(F ).
Case 2: F (x) ≤ 0 for all x ∈ S. Then,

∣∣F (x)∣∣ = −F (x) for all x ∈ S. By properties of infimums
and supremums, we obtain MS(|F |) = supx∈S(−F (x)) = − infx∈S F (x) = −mS(F ), as well as
mS(|F |) = infx∈S(−F (x)) = − supx∈S F (x) = −MS(F ). This results in:

MS(|F |)−mS(|F |) = (−mS(F ))− (−MS(F )) =MS(F )−mS(F ).

Case 3: There exist x1, x2 ∈ S for which F (x1) > 0 and F (x2) < 0. Then, mS(F ) < 0 and
MS(F ) > 0. Moreover, since |F | is nonnegative everywhere, we have mS(|F |) ≥ 0. Finally, we
have:

MS(|F |) = sup
x∈S

∣∣F (x)∣∣
= max

(
sup
x∈S

F (x)≥0

∣∣F (x)∣∣ , sup
x∈S

F (x)≤0

∣∣F (x)∣∣)

= max

(
sup
x∈S

F (x)≥0

F (x), sup
x∈S

F (x)≤0

(−F (x))

)

= max

(
sup
x∈S

F (x)≥0

F (x),− inf
x∈S

F (x)≤0

F (x)

)

= max(MS(F ),−mS(F )).

In the case when MS(|F |) =MS(F ), we obtain:

MS(|F |)−mS(|F |) ≤MS(F )− 0 ≤MS(F )−mS(F ).

Otherwise, in the case when MS(|F |) = −mS(F ), we obtain:

MS(|F |)−mS(|F |) ≤ −mS(F )− 0 ≤MS(F )−mS(F ).

Overall, in all cases, we proved that MS(|F |)−mS(|F |) ≤MS(F )−mS(F ), as desired.
Step 2: We will apply Spivak’s Theorem 3-3 to prove that |F | is integrable.
Let any ε > 0 be given. Then, since F is integrable, Theorem 3-3 gives us some partition P of A
such that U(F, P )−L(F, P ) < ε. Next, we obtain the following bound on U(|F | , P )−L(|F | , P ):

U(|F | , P )− L(|F | , P ) =
∑
S∈P

vol(S)MS(|F |)−
∑
S∈P

vol(S)mS(|F |)

=
∑
S∈P

vol(S)(MS(|F |)−mS(|F |))

≤
∑
S∈P

vol(S)(MS(F )−mS(F )) (Applying Step 1)

=
∑
S∈P

vol(S)MS(F )−
∑
S∈P

vol(S)mS(F )

= U(F, P )− L(F, P )
< ε.
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Therefore, for all ε > 0, there exists some partition P of A such that U(|F | , P )−L(|F | , P ) < ε.
Then, by Theorem 3-3, |F | is integrable, as required.

Step 3: We will prove
∫
A|F | ≥

∣∣∣∫A F ∣∣∣ by proving that
∫
A|F | ≥

∫
A F and that

∫
A|F | ≥ −

∫
A F .

First, we know
∣∣F (x)∣∣ ≥ F (x) for all x ∈ A. Then, since |F | and F are both integrable, it follows

from Question 3 that
∫
A|F | ≥

∫
A F .

Next, since F is integrable, we can plug c = −1 into Question 1(c) to obtain that −F is integrable
and that

∫
A(−F ) = −

∫
A F . Now, since

∣∣F (x)∣∣ ≥ −F (x) for all x ∈ S, and since |F | and −F
are both integrable, it follows from Question 3 that

∫
A|F | ≥

∫
A(−F ) = −

∫
A F .

Finally, since
∫
A|F | ≥

∫
A F and

∫
A|F | ≥ −

∫
A F , we conclude that:∫

A
|F | ≥ max

(∫
A
F,−

∫
A
F

)
=

∣∣∣∣∫
A
F

∣∣∣∣ ,
as required.

Combining these three Steps, we proved that |F | is integrable and that
∣∣∣∫A F ∣∣∣ ≤ ∫A|F | whenever

F is integrable, as required.
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5. (a) We will show that an unbounded set cannot have content 0.
Assume for contradiction that there exists an unbounded set S ⊆ Rn of content 0. Then, let us
pick ε := 1 > 0. By definition of content 0, there exist finitely many closed rectangles A1, . . . , Ak

of total volume less than ε that cover S. Over all indices 1 ≤ j ≤ k, let us express each rectangle
Aj as the product

∏n
i=1[ai,j , bi,j ]. Then, over all indices 1 ≤ i ≤ n, we can define the bounds:

a′i := min
1≤j≤k

ai,j , b′i := max
1≤j≤k

bi,j .

Finally, we can define the rectangle A′ :=
∏n

i=1[a
′
i, b
′
i].

Now, let any 1 ≤ j ≤ k be given. By construction, we obtain for all 1 ≤ i ≤ n that
a′i ≤ ai,j ≤ bi,j ≤ b′i, so [ai,j , bi,j ] ⊆ [a′i, b

′
i]. Since this is true for all 1 ≤ i ≤ n, it follows

that
∏n

i=1[ai,j , bi,j ] ⊆
∏n

i=1[a
′
i, b
′
i], so Aj ⊆ A′ for all 1 ≤ j ≤ k.

Next, we assumed above that the rectangles A1, . . . , Ak cover S. Since we just proved that the
rectangle A′ contains all of A1, . . . , Ak, it follows that A′ contains S. However, this contradicts
our assumption that S is unbounded.
Therefore, by contradiction, every unbounded set must not have content 0, as required.

(b) We will prove that N, viewed as a subset of R, is a closed set of measure 0 but not content 0.
Step 1: We will show that N is closed by showing that R− N is open.
Let any x ∈ R−N be given. Then, we will show that x has an open neighbourhood contained in
R− N using the following casework:
Case 1: x < 1. Then, the interval (x− 1, 1) is an open neighbourhood of x. This interval is also
contained in R− N because all elements of N are at least 1.
Case 2: x ≥ 1. Then, since x /∈ N, we know that x is not an integer, so x must be between two
consecutive integers. In other words, x ∈ (n, n+1) for some n ∈ Z. Since the interval (n, n+1)
cannot contain any positive integer, it must be an open neighbourhood of x contained in R−N.
In both cases, we showed that x has an open neighbourhood contained in R − N. Since this is
true for all x ∈ R− N, we conclude that R− N is open, so N is closed, as desired.
Step 2: We will show that N has measure 0.
Let any ε > 0 be given. Then, consider the sequence of closed rectangles {Ak}k∈N defined by
Ak := [k − ε

2k+2 , k +
ε

2k+2 ]. First, we have for all k ∈ N that k ∈ Ak, so the rectangles {Ak}k∈N
cover N. Moreover, their total volume is:

∞∑
k=1

vol(Ak) =

∞∑
k=1

((
k +

ε

2k+2

)
−
(
k − ε

2k+2

))

=
∞∑
k=1

ε

2k+1

=
ε

2

∞∑
k=1

(
1

2

)n

=
ε

2
·

1
2

1− 1
2

(Infinite geometric series)

=
ε

2
< ε.

Therefore, for all ε > 0, we found countably many closed rectangles of total volume less than ε
that cover N, so N has measure 0, as desired.
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Step 3: Since N is unbounded, part (a) implies that N does not have content 0.
Combining these three steps, we conclude that N ⊆ R is a closed set of measure 0 which does
not have content 0, as required.
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6. Given a countable union A =
⋃∞

i=1(ai, bi) of open intervals such that ([0, 1] ∩Q) ⊆ A and such
that

∑∞
i=1(bi − ai) < 1, we will show that the boundary of A is not of measure 0.

Step 1: Similarly to Assignment 1 Question 5, we will prove that the boundary of A contains
[0, 1]−A.
Let any x ∈ [0, 1]−A be given. Then, let (a, b) be any open interval around x. Since Q is dense,
both intervals (a, x] and [x, b) must include rational numbers arbitrarily close to x. Then, since
x ∈ [0, 1], either the rational numbers arbitrarily close to x from above or the rationals arbitrarily
close to x from below (or both) must be in [0, 1]. Such rational numbers would be inside (a, x]
or [x, b), respectively. Since (a, b) contains both (a, x] and [x, b), this implies that (a, b) contains
rational numbers in [0, 1] in either case. All such rational numbers are given to be in A, so (a, b)
contains elements of A. Moreover, (a, b) also contains x /∈ A, so (a, b) also contains an element
outside A. Thus, every open interval (a, b) around x contains both an element inside A and an
element outside A, so x is in the boundary of A. This proof applies for all x ∈ [0, 1]− A, so we
conclude that the boundary of A contains [0, 1]−A, as required.
Step 2: We will prove that the boundary of A is not of measure 0.
First, since we are given

∑∞
i=1(bi − ai) < 1, we can define ε := 1−

∑∞
i=1(bi − ai) > 0.

Next, let
⋃∞

i=1(ci, di) be a countable union of open intervals that cover the boundary of A. Then,
by Step 1, this union also covers [0, 1]−A, so [0, 1] ⊆

⋃∞
i=1(ci, di) ∪A. As a result, the union:

∞⋃
i=1

(ci, di) ∪
∞⋃
i=1

(ai, bi)

is an open cover of [0, 1]. Since [0, 1] is compact, we can extract a finite subcover:⋃
i∈I1

(ci, di) ∪
⋃
i∈I2

(ai, bi)

of [0, 1], where I1, I2 are finite indexing sets. Now, let us define k := |I1|+|I2|, and let us order
these intervals as (x1, y1), (x2, y2), . . . , (xk, yk) in increasing order of xi. Then, we may assume
without loss of generality that none of these intervals is completely contained inside another;
otherwise, we could remove it from our cover of [0, 1]. In other words, we may assume that
yi < yi+1 for all indices 1 ≤ i < k, or else (xi, yi) would contain (xi+1, yi+1), and we could
disregard (xi+1, yi+1). We may also assume without loss of generality that y1 > 0 and that
xk < 1; otherwise, if y1 ≤ 0 or xk ≥ 1, then [0, 1] would not intersect (x1, y1) or (xk, yk),
respectively, so (x1, y1) or (xk, yk) would not contribute to the cover of [0, 1]. Overall, we are
assuming without loss of generality that x1 < · · · < xk < 1 and that 0 < y1 < · · · < yk.
Now, since the intervals (xi, yi) cover [0, 1], we must have x1 < 0, or else the interval [0, x1]
would remain uncovered (since (x1, y1) is the ”leftmost interval”). We must also have yk > 1, or
else the interval [yk, 1] would remain uncovered (since (xk, yk) is the ”rightmost interval”). This
gives us yk − x1 > 1 − 0 = 1. Next, for all indices 1 ≤ i < k, we must have yi > xi+1, or else
the interval [yi, xi+1] would remain uncovered. Then, by telescoping series, we obtain:

yk − x1 = (y1 − x1) + (x2 − y1) + (y2 − x2) + (x3 − y2) + · · ·+ (xk − yk−1)− (yk − xk)

=

k∑
i=1

(yi − xi) +
k−1∑
i=1

(xi+1 − yi)

<

k∑
i=1

(yi − xi). (Since yi > xi+1)
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This gives us the bound:
k∑

i=1

(yi − xi) > yk − x1 > 1.

Now, the intervals {(xi, yi)}1≤i≤k, consist of the intervals {(ci, di)}i∈I1 and {(ai, bi)}i∈I2 , so we
obtain:

1 <

k∑
i=1

(yi − xi) =
∑
i∈I1

(di − ci) +
∑
i∈I2

(bi − ai) ≤
∞∑
i=1

(di − ci) +
∞∑
i=1

(bi − ai).

As a result, we obtain:

∞∑
i=1

vol((ci, di)) =

∞∑
i=1

(di − ci) > 1−
∞∑
i=1

(bi − ai) = ε.

Therefore, we found ε > 0 such that all countable unions of open intervals that cover the boundary
of A have a total volume of at least ε, so the boundary of A is not of measure 0, as required.

18



7. Given an increasing function f : [a, b]→ R, let C be the set of discontinuities of f . Then, we will
show that C is of measure 0.
Step 1: For all n ∈ N, define Cn := {x ∈ [a, b] : O(f, x) > 1

n} (where O denotes oscillation).
For convenience, let us also define kn := bn(f(b)− f(a))c ∈ Z. Note that, since f is increasing,
we have f(b) > f(a), so kn ≥ 0. Also note that kn +1 > n(f(b)− f(a)) by construction. Then,
given any n ∈ N, we will prove that Cn contains at most kn + 2 elements.
Assume for contradiction that Cn contains at least kn + 3 elements. Then, Cn contains at least
kn + 1 elements not equal to a or b. Let us order those elements as x1 < x2 < · · · < xkn+1,
where x1 > a and xkn+1 < b. Next, let us pick a sequence a = t0 < t1 < · · · < tkn+1 = b, where
ti is picked inside (xi, xi+1) for all 1 ≤ i ≤ kn. This gives us the chain of inequalities:

a = t0 < x1 < t1 < x2 < t2 < · · · < xkn+1 < tkn+1 = b.

Now, consider the differences di := f(ti) − f(ti−1) for all 1 ≤ i ≤ kn + 1. Then, applying
telescopic series, the sum of the dis is:

kn+1∑
i=1

di =

kn+1∑
i=1

(f(ti)− f(ti−1)) = f(tkn+1)− f(t0) = f(b)− f(a).

As a result, the average of the dis is:

1

kn + 1

kn+1∑
i=1

di =
f(b)− f(a)
kn + 1

<
f(b)− f(a)

n(f(b)− f(a))
=

1

n
,

so there exists some index 1 ≤ j ≤ kn + 1 such that dj <
1
n .

Now, let us define δ′ := min(tj−xj , xj−tj−1). Since tj−1 < xj < tj , we know that δ′ is positive.
Then, given any δ > 0 such that δ < δ′, let us consider the rectangle R := (xj − δ, xj + δ).
For all x ∈ R, we obtain x > xj − δ > xj − δ′ ≥ xj − (xj − tj−1) = tj−1, and we also
obtain x < xj + δ < xj + δ′ ≤ xj + (tj − xj) = tj . Since f is increasing, it follows from
tj−1 < x < tj that f(tj−1) < f(x) < f(tj) for all x ∈ R. As a result, infx∈R f(x) ≥ f(tj−1) and
supx∈R f(x) ≤ f(tj), so:

O(f,R) = sup
x∈R

f(x)− inf
x∈R

f(x) ≤ f(tj)− f(tj−1) = dj .

Since this is true for all positive δ < δ′, this implies that O(f,R) cannot approach anything above
dj as δ approaches 0, so O(f, xj) ≤ dj < 1

n . This contradicts our assumption that xj ∈ Cn.
Therefore, by contradiction, we obtain for all n ∈ N that Cn contains at most kn + 2 elements,
as desired. In particular, every Cn is finite.
Step 2: We will conclude that C has measure zero.
First, recall that C is the set of discontinuities of f . Additionally, since f is increasing, f is
bounded above by f(b) and bounded below by f(a). Then, by Spivak’s Theorem 1-10, C is
precisely the set {x ∈ [a, b] : O(f, x) > 0}. Next, we can rewrite this set as the countable union
C =

⋃∞
n=1{x ∈ [a, b] : O(f, x) > 1

n} =
⋃∞

n=1Cn. In Step 1, we proved that each Cn is finite, so
it follows that C is countable. Therefore, C is measure-0 as a countable set, as required.
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Notes on Intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions.
(Note: This section was not submitted on Crowdmark.)
First, for the problems about integrals (Problems 1 to 4), there is a common multi-step process. First,
we prove local statements for mS(f) and MS(f) using bounding arguments. Then, we sum those
statements over all S ∈ P to prove statements for L(f, P ) and U(f, P ) for individual partitions P .
Finally, we use those statements to prove global statements about L(f) and U(f) with more bounding
arguments. This is the same order that these concepts were introduced when defining integrals in lecture.
As a result, this approach is an effective multi-step process for proving statements about integrals. We
will see below how this approach applies to individual problems.

1. For this question, parts (a) and (b) are organized in a way that allows us to illustrate our multi-step
process of (mS(f),MS(f)) → (L(f, P ), U(f, P )) → (L(f), U(f)). First, the main challenge is
to prove that mS(f) +mS(g) ≤ mS(f + g) and MS(f + g) ≤MS(f) +MS(g); in other words,
the sum of infimums is at most the infimum of the sums, and analogously for supremums. To
solve this problem, recall that we proved a similar problem as an intermediate step when proving
Fubini’s Theorem in lecture. Afterward, the other steps of our multi-step process follow directly.
For part (c), we use our multi-step process again to prove that

∫
A cf = c

∫
A f . If c > 0, then

the analogous steps for our multi-step process are similar to those from part (a): Prove that
cmS(f) ≤ mS(cf) ≤ MS(cf) ≤ cMS(f), then prove that cL(f, P ) ≤ L(cf, P ) ≤ U(cf, P ) ≤
cU(f, P ), then prove that cL(f) ≤ L(cf) ≤ U(cf) ≤ cU(f), which implies L(cf) = U(cf)
because cL(f) = cU(f). For c < 0, there are some annoying details because infimums and
supremums ”swap places” when multiplying by a negative number. Afterward, the proof is not
too much more difficult.

2. First, we will discuss the ”⇒” direction: Proving that f |S is integrable over S if f is integrable
over A. One possible approach is to apply Spivak’s Theorem 3-3. Once we pick the partition P ′′

of A such that U(f, P ′′)−L(f, P ′′) is small, the key idea is that only part of U(f, P ′′)−L(f, P ′′)
is contributed by S. This helps us to prove that U(f |S , Q)− L(f |S , Q) is even smaller, where Q
is the restriction of P ′′ to S. Then, this helps us to prove that f |S is integrable.
Next, we will discuss the rest of the problem: Proving that f is integrable if all f |S are integrable,
and proving that

∫
A f =

∑
S∈P

∫
S f |S in this case. Here, we want to find a partition P ′ such

that U(f, P ′) −
∑

S∈P
∫
S f |S and

∑
S∈P

∫
S f |S − L(f, P ′) are small. Again, the key idea is

that these differences can split up into contributions from individual subrectangles S. Each such
contribution is U(f |S , Q)−

∫
S f |S for the upper sum and

∫
S f |S − L(f |S , Q) for the lower sum.

By minimizing all contributions, we can minimize the entire differences U(f, P ′)−
∑

S∈P
∫
S f |S

and
∑

S∈P
∫
S f |S − L(f, P

′), which helps us to solve the problem.

3. We want to prove that
∫
A f ≤

∫
A g with our multi-step process. First, the analogous problems for

each step are quite clear: Prove that mS(f) ≤ mS(g), then L(f, P ) ≤ L(g, P ), then L(f) ≤ L(g).
(We could also do the same for MS(f) ≤MS(g) and so on, but it turns out that we don’t need
that.) Afterward, the multi-step process can be applied directly.

4. For this question, since we need to show that |F | is integrable, and we do not need to fully
evaluate

∫
A|F |, we can afford to prove that |F | is integrable ”non-constructively” using Spivak’s

Theorem 3-3. Additionally, it is somewhat intuitive that ”|F | varies less than F” because F can
vary from negative to positive values while |F | is constrained to being nonnegative. Combining
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these two observations, we can construct a plan to prove that |F | is integrable. First, prove
that MS(|F |) − mS(|F |) ≤ MS(F ) − mS(F ) (i.e., |F | varies less than F ). Then, prove that
U(|F | , P ) − L(|F | , P ) ≤ U(F, P ) − L(F, P ). Then, apply Spivak’s Theorem 3-3 to prove that
|F | is integrable.

Finally, to show that
∣∣∣∫A F ∣∣∣ ≤ ∫A|F |, the key idea is to realize that this inequality is a combination

of two inequalities,
∫
A F ≤

∫
A|F | and

∫
A(−F ) ≤

∫
A|F |. Both inequalities are relatively simple

to prove after solving Question 3.

5. First, the key idea for part (a) was to use proof by contradiction. This is because an unbounded
set cannot be covered by finitely many rectangles, no matter their volume. We can formalize
this by showing that the finitely many rectangles are themselves bounded by a larger rectangle
surrounding them, and then the larger rectangle cannot cover any unbounded set.
Next, for part (b), we will discuss how to search for an example which satisfies the required
conditions.

i) First, for the set to not have content 0, part (a) hints that the set should be unbounded.

ii) Moreover, for the set to be closed, we could try to define the set as a collection of single
points that are far apart. This approach is similar to that of Assignment 2 Question 2(c).

iii) Finally, for the set to be measure 0, there are several ways for this to happen, and one of the
simplest ways is for the set to be countable. This is another reason that we want the set to
consist of single points instead of closed intervals/rectangles.

Now, we see that a good fit for these conditions is N (or Z). Then, all that remains is some
formalities to prove that N does satisfy the required conditions.

6. First, the condition ([0, 1] ∩ Q) ⊆ A reminds us of Assignment 1 Question 5. Indeed, the key
step is to prove that the boundary of A contains [0, 1]−A, similarly to Assignment 1 Question 5.
Then, if we were to cover the boundary of A with an open cover {Ui}i∈N using open rectangles,
then those rectangles, combined with the rectangles in A =

⋃∞
i=1(ai, bi), would have to ”work

together” to cover [0, 1]. In fact, since [0, 1] is compact, finitely many such rectangles would have
to cover [0, 1] together. Now, since

∑
(bi− ai) < 1, we see that the rectangles in A do not cover

enough of [0, 1], as expressed by Spivak’s Theorem 3-5. Intuitively, the rectangles in {Ui}i∈N
would have to cover the entire remaining volume of 1−

∑
(bi−ai) – by proving this, we are done

proving that the boundary of A does not have measure 0.
Remark : In hindsight, using Spivak’s Theorem 3-5 would have simplified Step 2 of the solution
greatly.

7. The key idea, as expressed in the hint, is to consider the constructions Cn = {x ∈ [a, b] :

O(f, x) > 1
n}. (One way to motivate this is that a similar construction was required to prove

Spivak’s Theorem 3-8.) It is intuitively clear why each Cn is finite: Every point inside Cn causes f
to ”jump up” by at least 1

n , and it can only ”jump up” finitely many times because it is bounded by
f(a) and f(b). Indeed, our solution detects these ”jumps” by measuring f at points t0, t1, t2, . . .
between points in Cn. After we argue that each Cn is finite, it easily follows that the set of
discontinuities of f is countable and thus measure-0, as required.
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