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1. We are given an open set A ⊆ Rn and a continuously differentiable 1-1 function f : A → Rn

such that f ′(x) is invertible for all x ∈ A. Then, we will show that f(A) is also open and that
f−1 : f(A)→ A is differentiable. We will also show for all open subsets B ⊆ A that f(B) is also
open.
First, for all a ∈ A, since f is continuously differentiable in the open neighbourhood A around a,
and since f ′(a) is invertible, we can apply the Inverse Function Theorem on f : A→ Rn. Then,
we obtain an open neighbourhood Va ⊆ A around a and an open neighbourhood Wa around f(a)
such that f : Va →Wa has a continuous and differentiable inverse f−1 :Wa → Va. (Technically,
Va is open in the topology of A, meaning that Va can be expressed as U ∩ A for some open set
U ⊆ Rn. Since A is also open, we safely obtain that Va is open in Rn as an intersection of two
open sets. The same technical note is not needed for Wa since we treat Rn as the codomain of
f .)
Now, since (the restriction of) f maps Va to Wa, and since Va ⊆ A, we obtain Wa ⊆ f(A), so
Wa is an open neighbourhood of f(a) contained in f(A). Moreover, for all b ∈ f(A), there exists
a ∈ A such that b = f(a), and then Wa is an open neighbourhood of f(a) = b contained in
f(A). In other words, every point in f(A) has an open neighbourhood around it that is contained
in f(A), so f(A) is open, as required.
Next, for all open subsets B ⊆ A, we know that:

• B is open.

• f is continuously differentiable and 1-1 on B because it also has those features on A.

• f ′(x) is invertible for all x ∈ B because f ′(x) is also invertible for all x ∈ A.

Therefore, we can use the same proof as above to show that f(B) is open, as required.
It remains to show that f−1 : f(A) → A is differentiable. For all a ∈ A, we apply the Inverse
Function Theorem as above to determine that f−1 :Wa → Va is a differentiable inverse function
of f : Va → Wa. What we mean by this is that we define the function ga : Wa → Va to be
the inverse of the restriction f |Va – defining ga allows us to avoid confusion with the inverse
f−1 : f(A)→ A defined on the entire image f(A). Using this distinction, we wish to show that
ga coincides with f−1 on Wa. Once we show this, we also know that ga is differentiable at the
point f(a) for all a ∈ A, so we obtain that f−1 is differentiable at f(a) for all f(a) ∈ f(A).
To begin, since ga is the inverse function of f |Va , the function f |Va

: Va →Wa must be surjective.
In other words, for all y ∈Wa, there exists x ∈ Va such that f |Va(x) = y. Then, by definition of
inverse functions, we obtain:

x = ga(f |Va(x)) = ga(y),

as well as:
x = f−1(f(x)) = f−1(f |Va(x)) = f−1(y).

This shows that ga(y) = f−1(y) for all y ∈Wa, as desired. Therefore, as discussed above, we are
done proving that f−1 is differentiable, as required.
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2. Given any continuously differentiable function f : R2 → R, we will prove that f is not 1-1.
First, in the special case when D1f(x, y) = 0 for all (x, y) ∈ R2, let us define the function
g1 : R → R by g1(x) = f(x, 0). Then, by plugging y = 0 into the condition D1f(x, y) = 0, we
obtain g′1(x) = D1f(x, 0) = 0 for all x ∈ R. Now, consider g1(0) and g1(1). Since we found
that g′1(x) exists and equals 0 for all x ∈ R, g1 is continuous and differentiable everywhere, so
the Mean Value Theorem from MAT157 gives us some point x′ ∈ (0, 1) such that:

g1(1)− g1(0)
1− 0

= g′1(x
′),

or g1(1) − g1(0) = g′1(x
′). Since g′1(x

′) = 0, this gives us g1(1) = g1(0), which implies that
f(1, 0) = f(0, 0). Thus, f is not 1-1 if D1f(x, y) is zero everywhere.
From now on, suppose to the contrary that D1f(x0, y0) 6= 0 at some point (x0, y0) ∈ R2. Then,
let us define g2 : R2 → R2 by g2(x, y) := (f(x, y), y) = (f(x, y), π2(x, y)). We can compute the
differential g′2(x0, y0) as follows:

g′2(x0, y0) =

(
D1f(x0, y0) D2f(x0, y0)
D1π2(x0, y0) D2π2(x0, y0)

)
(Applying Spivak’s Theorem 2-7)

=

(
D1f(x0, y0) D2f(x0, y0)

0 1

)
. (Applying Spivak’s Theorem 2-3(2))

This matrix has a determinant of D1f(x0, y0)·1−D2f(x0, y0)·0 = D1f(x0, y0), which we assumed
to be nonzero. As a result, g′2(x0, y0) is invertible. Moreover, since f and π2 are continuously
differentiable, g2 is also continuously differentiable, so we can apply the Inverse Function Theorem.
Then, there exist an open set V ⊆ R2 containing (x0, y0) and an open set W ⊆ R2 containing
g2(x0, y0) = (f(x0, y0), y0) such that g2 : V → W has an inverse g−12 : W → V . Now,
since W is an open neighbourhood around (f(x0, y0), y0), there exists an open ball with some
radius r > 0 around (f(x0, y0), y0) that is contained in W . In particular, (f(x0, y0), y0 + r

2)
is in this open ball, so it is also inside W . As a result, we can apply g−12 to obtain the point
(x1, y1) := g−12 (f(x0, y0), y0 +

r
2). Then, on the one hand:

g2(x1, y1) = g2(g
−1
2 (f(x0, y0), y0 +

r

2
)) = (f(x0, y0), y0 +

r

2
).

On the other hand, g2(x1, y1) = (f(x1, y1), y1) by definition. As a result:

(f(x1, y1), y1) = (f(x0, y0), y0 +
r

2
). (∗)

Comparing the second coordinates of (∗) yields y1 = y0 +
r
2 , which implies (x1, y1) 6= (x0, y0).

Comparing the first coordinates of (∗) also yields f(x1, y1) = f(x0, y0). This, along with
(x1, y1) 6= (x0, y0), proves that f is not 1-1.
Therefore, no matter whether D1f is zero everywhere or not, f is not 1-1, as required.
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3. (a) First, given any differentiable f : R→ R which satisfies f ′(a) 6= 0 for all a ∈ R, we will show
that f is 1-1 on R.
Assume for contradiction f is not 1-1. Then, there exist distinct x, y ∈ R such that f(x) = f(y);
without loss of generality, x < y. Now, since f is continuous and differentiable everywhere, the
Mean Value Theorem from MAT157 gives us some x0 ∈ [x, y] such that:

f ′(x0) =
f(y)− f(x)

y − x
=

0

y − x
= 0.

This contradicts the condition that f ′(a) 6= 0 for all a ∈ R. Thus, by contradiction, f is 1-1 on
R, as required.
(b) Now, given the function f : R2 → R2 defined by f(x, y) := (ex cos y, ex sin y), we will show
that f ′(x, y) is always invertible yet f is not 1-1.
First, consider the points (x1, y1) := (0, 0) and (x2, y2) := (0, 2π). Then, (x1, y1) 6= (x2, y2),
while:

f(x1, y1) = (e0 cos(0), e0 sin(0)) f(x2, y2) = (e0 cos(2π), e0 sin(2π))

= (1, 0) = (1, 0)

= f(x1, y1).

Thus, there exist distinct (x1, y1), (x2, y2) ∈ R2 such that f(x1, y1) = f(x2, y2), so f is not 1-1,
as required.
Next, let us compute the partial derivatives of f as follows:

∂

∂x
f(x, y) =

∂

∂x

(
ex cos y
ex sin y

)

=

(
cos y ∂

∂xe
x

sin y ∂
∂xe

x

)
(Treating y as a constant)

=

(
ex cos y
ex sin y

)
.

∂

∂y
f(x, y) =

∂

∂y

(
ex cos y
ex sin y

)

=

(
ex ∂

∂y cos y

ex ∂
∂y sin y

)
(Treating x as a constant)

=

(
−ex sin y
ex cos y

)
.

Since both partial derivatives are continuous, Spivak’s Theorem 2-8 tells us that f ′(x, y) exists,
then Spivak’s Theorem 2-7 tells us that:

f ′(x, y) = (
∂

∂x
f(x, y),

∂

∂y
f(x, y)) =

(
ex cos y −ex sin y
ex sin y ex cos y

)
.

Then, this differential has a determinant of:

det f ′(x, y) = ex cos y · ex cos y − (−ex sin y) · ex sin y = e2x(cos2 y + sin2 y) = e2x > 0.

This proves that f ′(x, y) is invertible at all (x, y). Therefore, the given function f(x, y) is an
example of a function which is not 1-1 and whose differential is always invertible, as required.
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Notes on Intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions.
(Note: This section was not submitted on Crowdmark.)

1. To solve the multiple parts of this problem, we must apply the Inverse Function Theorem in several
different ways. First, we need to prove that f(A) is open. Here, the key idea is that Inverse
Function Theorem produces entire open neighbourhoods Wa ⊆ f(A) around all f(a) ∈ f(A),
and these open neighbourhoods help to prove that f(A) is open. Fortunately, the same trick works
to prove that f(B) is open for all open B ⊆ A. Next, when we prove that f−1 is differentiable,
we first observe that the local inverses (labelled as ga in the solution) produced by the Inverse
Function Theorem are differentiable. This is useful if the global inverse f−1 coincides with the
local inverses ga, which is not too difficult to verify.
Remark : For the submitted solution, it could have been better to begin with the proof that f−1 is
differentiable. Then, f−1 would also be continuous. Then, since preimages of continuous functions
preserve openness, this would have greatly simplified the proofs that f(A) = (f−1)−1(A) is open
and that f(B) = (f−1)−1(B) is open for all open B ⊆ A.

2. This solution is strongly motivated by the textbook’s hint, which tells us to consider the function
g(x, y) = (f(x, y), y). We would like to use the Inverse Function Theorem on g, which would
allow us to find inputs (x, y) corresponding to an entire open set of outputs g(x, y) = (f(x, y), y).
Then, by adjusting the outputs slightly so that f(x, y) remains constant while y changes, we can
construct different points (x, y) such that f(x, y) remains constant, proving that f is not 1-1.
Our plan has one issue: We must check whether the Inverse Function Theorem can be applied.
By computing g′, we find that g′(x, y) is invertible if and only if D1f(x, y) is nonzero. Thus, this
issue is only problematic if D1f is zero everywhere. If this is the case, then f does not change
when we move in the x-direction, which gives an alternative path to prove that f is not 1-1.
Remark : In hindsight, this question can be thought of as an Implicit Function Theorem question.
Since the domain of f (i.e., R2) is higher-dimensional than the codomain of f (i.e., R), we could
try using the Implicit Function Theorem to find x as a function of y to keep f(x, y) constant.
This approach explains the construction g(x, y) = (f(x, y), y), since this construction was also
used to prove the Implicit Function Theorem using the Inverse Function Theorem. Moreover, this
approach requires a workaround if the matrix (D1f(x, y)) is not invertible, or if D1f(x, y) is zero
everywhere, similarly to above.

3. First, part (a) should be fairly standard MAT157 material. Since all tangent slopes must be
nonzero, the Mean Value Theorem says that all secant slopes must also be nonzero, which directly
implies that f is 1-1.
Next, for part (b), a brute-force computation is enough to prove that f ′(x, y) is always invertible.
Then, the main challenge is to prove that f is not 1-1. To do this, we notice that in the formula
f(x, y) = (ex cos y, ex sin y), the variable y is always plugged into trigonometric formulas. This
implies that f(x, y) is periodic in y, with a period of 2π. As a result, we can prove that f is not
1-1 by taking two inputs (x, y) with y-coordinates that are 2π apart, then verifying that f sends
those two inputs to the same output.
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