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1. For all parts of this question, we are given a continuous function g : R→ R.
(a) We will find the partial derivatives of the following function:

f(x, y) :=

∫ x+y

a
g.

First, keeping y constant, we obtain:

∂f(x, y)

∂x
=

∂

∂x

∫ x+y

a
g

=
d

du

∫ u

a
g

∣∣∣∣
u=x+y

· ∂
∂x

(x+ y) (Applying Chain Rule)

= g(x+ y) · ∂
∂x

(x+ y) (Applying Fundamental Theorem of Calculus)

= g(x+ y) · 1 (Keeping y constant)

= g(x+ y).

Next, keeping x constant, we obtain:

∂f(x, y)

∂y
=

∂

∂y

∫ x+y

a
g

=
d

du

∫ u

a
g

∣∣∣∣
u=x+y

· ∂
∂y

(x+ y) (Applying Chain Rule)

= g(x+ y) · ∂
∂y

(x+ y) (Applying Fundamental Theorem of Calculus)

= g(x+ y) · 1 (Keeping x constant)

= g(x+ y).

Overall, we obtain:

∂f(x, y)

∂x
=
∂f(x, y)

∂y
= g(x+ y).

(b) We will find the partial derivatives of the following function:

f(x, y) :=

∫ x

y
g.

First, keeping y constant, we obtain:

∂f(x, y)

∂x
=

∂

∂x

∫ x

y
g

= g(x). (Applying Fundamental Theorem of Calculus while keeping y constant)

Next, keeping x constant, we obtain:

∂f(x, y)

∂y
=

∂

∂y

∫ x

y
g

=
∂

∂y

(
−
∫ y

x
g

)
= −g(y). (Applying Fundamental Theorem of Calculus while keeping x constant)
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Overall, we obtain:

∂f(x, y)

∂x
= g(x),

∂f(x, y)

∂y
= −g(y) .

(c) We will find the partial derivatives of the following functions:

f(x, y) :=

∫ xy

a
g.

First, keeping y constant, we obtain:

∂f(x, y)

∂x
=

∂

∂x

∫ xy

a
g

=
d

du

∫ u

a
g

∣∣∣∣
u=xy

· ∂
∂x
xy (Applying Chain Rule)

= g(xy) · ∂
∂x
xy (Applying Fundamental Theorem of Calculus)

= g(xy)y. (Keeping y constant)

Next, keeping x constant, we obtain:

∂f(x, y)

∂y
=

∂

∂y

∫ xy

a
g

=
d

du

∫ u

a
g

∣∣∣∣
u=xy

· ∂
∂y
xy (Applying Chain Rule)

= g(xy) · ∂
∂y
xy (Applying Fundamental Theorem of Calculus)

= g(xy)x. (Keeping x constant)

Overall, we obtain:

∂f(x, y)

∂x
= g(xy)y,

∂f(x, y)

∂y
= g(xy)x.

(d) We will find the partial derivatives of the following function:

f(x, y) :=

∫ ∫ y
b g

a
g.

First, keeping y constant, we notice that x does not contribute to the formula of f(x, y), so
f(x, y) becomes constant. Thus, applying MAT157 material, we obtain ∂

∂xf(x, y) = 0.
Next, keeping x constant, we obtain:

∂f(x, y)

∂y
=

∂

∂y

∫ ∫ y
b g

a
g

=
d

du

∫ u

a
g

∣∣∣∣
u=

∫ y
b g

· ∂
∂y

∫ y

b
g (Applying Chain Rule)

= g

(∫ y

b
g

)
g(y). (Applying Fundamental Theorem of Calculus twice)
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Overall, we obtain:

∂f(x, y)

∂x
= 0,

∂f(x, y)

∂y
= g

(∫ y

b
g

)
g(y) .
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2. Given the function:

f(x, y) := xx
xx

y

+ (log x)(arctan(arctan(arctan(sin(cosxy)− log(x+ y))))),

we will find the partial derivative D2f(1, y).
First, for all y0 ∈ R, we have:

f(1, y0) = 11
11

y0

+ (log 1) · (some number) = 1 + 0 = 1.

Then, by definition of partial derivatives, we obtain the following for all y ∈ R:

D2f(1, y) = lim
h→0

f(1, y + h)− f(1, y)
h

= lim
h→0

1− 1

h
= lim

h→0
0 = 0 .
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3. Given continuous functions g1, g2 : R2 → R, we define f : R2 → R by:

f(x, y) =

∫ x

0
g1(t, 0)dt+

∫ y

0
g2(x, t)dt.

(a) First, we will show that ∂
∂yf(x, y) = g2(x, y).

Keeping x constant, we obtain:

∂

∂y
f(x, y) =

∂

∂y

(∫ x

0
g1(t, 0)dt+

∫ y

0
g2(x, t)dt

)
=

∂

∂y

∫ y

0
g2(x, t)dt (Since

∫ x

0
g1(t, 0)dt is constant if x is constant)

= g2(x, y), (Applying Fundamental Theorem of Calculus)

as required.
(b) Next, we will find a function fb : R2 → R such that ∂

∂xf(x, y) = g1(x, y).
Let us define fb : R2 → R by ”swapping” the first and second coordinates in the definition of f
above. Formally, we define:

fb(x, y) :=

∫ y

0
g2(0, t)dt+

∫ x

0
g1(t, y)dt.

(These integrals exist because g1, g2 are continuous.) Then, keeping y constant, we obtain:

∂

∂x
fb(x, y) =

∂

∂x

(∫ y

0
g2(0, t)dt+

∫ x

0
g1(t, y)dt

)
=

∂

∂x

∫ x

0
g1(t, y)dt (Since

∫ y

0
g2(0, t)dt is constant if y is constant)

= g1(x, y), (Applying Fundamental Theorem of Calculus)

as required.
(c) Next, we will find a function fc : R2 → R such that ∂

∂xfc(x, y) = x and ∂
∂yfc(x, y) = y.

Let us define fc : R2 → R by fc(x, y) :=
1
2(x

2 + y2). Then, keeping y constant, we obtain:

∂

∂x
fc(x, y) =

∂

∂x

1

2
(x2 + y2)

=
1

2
· 2x (Keeping y constant)

= x.

Keeping x constant, we also obtain:

∂

∂y
fc(x, y) =

∂

∂y

1

2
(x2 + y2)

=
1

2
· 2y (Keeping x constant)

= y.

Therefore, our choice of fc : R2 → R satisfies ∂
∂xfc(x, y) = x and ∂

∂yfc(x, y) = y, as required.

(d) Finally, we will find a function fd : R2 → R such that ∂
∂xfd(x, y) = y and ∂

∂yfd(x, y) = x.
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Let us define fd : R2 → R by fd(x, y) := xy. Then, keeping y constant, we obtain:

∂

∂x
fd(x, y) =

∂

∂x
xy

= y. (Keeping y constant)

Keeping x constant, we also obtain:

∂

∂y
fd(x, y) =

∂

∂y
xy

= x. (Keeping x constant)

Therefore, our choice of fd : R2 → R satisfies ∂
∂xfd(x, y) = y and ∂

∂yfd(x, y) = x, as required.
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4. Given f : Rn → R and x ∈ Rn, we define the directional derivative in the direction x to be:

Dxf(a) := lim
h→0

f(a+ hx)− f(a)
h

whenever this limit exists.
(a) First, we will show that Deif(a) = Dif(a), where ei is the standard basis vector in Rn whose
ith coordinate is 1 and whose other coordinates are 0.
By definition of directional derivatives, we have:

Deif(a) = lim
h→0

f(a+ hei)− f(a)
h

= lim
h→0

f((a1, . . . , ai−1, ai, ai+1, . . . , an) + h(0, . . . , 0, 1, 0, . . . , 0))− f(a1, . . . , an)
h

=
f(a1, . . . , ai−1, ai + h, ai+1, . . . , an)− f(a1, . . . , an)

h
,

and by definition of partial derivatives, this equals Dif(a). Therefore, Deif(a) = Dif(a), as
required.
(b) Next, we will show that Dtxf(a) = tDxf(a) for all t ∈ R.
(Note: Following the grader’s advice, the t = 0 case was removed from the solution to clean it
up after it was graded.)
We will assume t 6= 0 so that tx 6= 0 is a valid direction and the directional derivative Dtxf(a)
makes sense. By definition, we know that:

Dtxf(a) = lim
k→0

f(a+ k · tx)− f(a)
k

.

We wish to show that this limit equals tDxf(a). Let any ε > 0 be given. By definition, we also
know that:

Dxf(a) = lim
h→0

f(a+ hx)− f(a)
h

.

Then, since t 6= 0, we have ε
|t| > 0, so there exists some δ′ > 0 such that all h ∈ R which satisfy

0 < |h| < δ′ also satisfy:∣∣∣∣f(a+ hx)− f(a)
h

−Dxf(a)

∣∣∣∣ < ε

|t|
. (∗)

Now, let us pick δ := δ′

|t| > 0. Then, for all k ∈ R which satisfy 0 < |k| < δ, we obtain:∣∣∣∣f(a+ ktx)− f(a)
k

− tDxf(a)

∣∣∣∣ = ∣∣∣∣t · f(a+ ktx)− f(a)
kt

− tDxf(a)

∣∣∣∣
= |t|

∣∣∣∣f(a+ ktx)− f(a)
kt

−Dxf(a)

∣∣∣∣ .
Next, let us choose the substitution h := kt. Since t and k are nonzero, we obtain |h| = |k||t| > 0,
and we also obtain:

|h| = |k||t| < δ|t| = δ′

|t|
|t| = δ′.
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Overall, 0 < |h| < δ′, so (∗) applies to h. As a result:∣∣∣∣f(a+ ktx)− f(a)
k

− tDxf(a)

∣∣∣∣ = |t|∣∣∣∣f(a+ ktx)− f(a)
kt

−Dxf(a)

∣∣∣∣
= |t|

∣∣∣∣f(a+ hx)− f(a)
h

−Dxf(a)

∣∣∣∣
< |t| · ε

|t|
(Applying (∗))

= ε.

Thus, for all ε > 0, we found δ > 0 such that all k ∈ R which satisfy 0 < |k| < δ also satisfy:∣∣∣∣f(a+ ktx)− f(a)
k

− tDxf(a)

∣∣∣∣ < ε,

so we conclude that:

Dtxf(a) = lim
k→0

f(a+ ktx)− f(a)
k

= tDxf(a)

for all nonzero t. Overall, we proved that Dtxf(a) = tDxf(a) for all t ∈ R no matter whether t
is zero or nonzero, as required.
(c) Finally, if f is differentiable at a, we will show that Dxf(a) = Df(a)(x) and conclude that
Dx+yf(a) = Dxf(a) +Dyf(a).
To prove that Dxf(a) = Df(a)(x), let us consider the following two cases:
Case 1: x = 0. Then, since Df(a) is a linear map, we obtain Df(a)(x) = Df(a)(0) = 0. We
also obtain:

Dxf(a) = D0f(a)

= lim
t→0

f(a+ t · 0)− f(a)
t

= lim
t→0

f(a)− f(a)
t

= 0

= Df(a)(x).

Thus, Dxf(a) = Df(a)(x) for this case, as desired.

Case 2: x 6= 0. Then, since Dxf(a) is defined to be limt→0
f(a+tx)−f(a)

t , it is enough to show
that this limit exists and equals Df(a)(x). To do this, let any ε > 0 be given. Then, by definition
of Df(a), we know that the error function e(h) := f(a+ h)− f(a)−Df(a)(h) is in o(h). As a
result,

lim
h→0

f(a+ h)− f(a)−Df(a)(h)
|h|

= 0.

Then, since x 6= 0, we have ε
|x| > 0, so there exists δ′ > 0 such that all h ∈ Rn which satisfy

0 < |h| < δ′ also satisfy:∣∣∣∣f(a+ h)− f(a)−Df(a)(h)
|h|

∣∣∣∣ < ε

|x|
. (1)
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Now, since x 6= 0, we can define δ := δ′

|x| > 0. Then, for all t ∈ R which satisfy 0 < |t| < δ, since

t and x are nonzero, we have |tx| > 0. We also have:

|tx| = |t||x| < δ|x| = δ′

|x|
|x| = δ′.

Overall, we obtain 0 < |tx| < δ′, so we can plug h = tx into (1) to obtain:

ε

|x|
>

∣∣∣∣f(a+ tx)− f(a)−Df(a)(tx)
|tx|

∣∣∣∣
=

∣∣∣∣f(a+ tx)− f(a)−Df(a)(tx)
|t||x|

∣∣∣∣
=

1

|x|

∣∣∣∣f(a+ tx)− f(a)−Df(a)(tx)
t

∣∣∣∣
=

1

|x|

∣∣∣∣f(a+ tx)− f(a)− tDf(a)(x)
t

∣∣∣∣ (Since Df(a) is linear)

=
1

|x|

∣∣∣∣f(a+ tx)− f(a)
t

−Df(a)(x)
∣∣∣∣ .

Multiplying both sides by |x|, we obtain:∣∣∣∣f(a+ tx)− f(a)
t

−Df(a)(x)
∣∣∣∣ < ε. (2)

Therefore, for all ε > 0, we found δ > 0 such that all t ∈ R which satisfy 0 < |t| < δ also satisfy
(2), so we conclude that:

Dxf(a) = lim
t→0

f(a+ tx)− f(a)
t

= Df(a)(x).

At this point, we have proven that Dxf(a) = Df(a)(x) for all x ∈ Rn no matter whether x is
zero or nonzero, as required. Finally, for all x, y ∈ Rn, it follows that:

Dx+yf(a) = Df(a)(x+ y) = Df(a)(x) +Df(a)(y) = Dxf(a) +Dyf(a),

where the middle step holds because Df(a) is a linear map, as required.
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5. If a function f : Rn → R is homogeneous of degree m and differentiable, we will prove that:

n∑
i=1

xiDif(x) = mf(x)

for all x ∈ Rn.
Let any x ∈ Rn be given. First, let us define the function g : R → R by g(t) := f(tx). Then,
we will compute g′(1) in two different ways. On the one hand, since f is homogeneous of degree
m, we have g(t) = f(tx) = tmf(x). Then, since f(x) is a constant coefficient, we obtain
g′(t) = mtm−1f(x), and plugging in t = 1 yields g′(1) = m · 1m−1f(x) = mf(x). On the other
hand, if we define h : R→ Rn by h(t) := tx, then we can write g as the composition:

g(t) = f(tx) = f(h(t)) = (f ◦ h)(t).

Now, since x is constant, h(t) = xt is a linear map in terms of t with matrix x = (x1, . . . , xn)
T .

Then, Spivak’s Theorem 2-3(2) tells us that h′(t) = (x1, . . . , xn)
T . Next, since f is differentiable,

we can apply Spivak’s Theorem 2-7 to express the differential of f at any point y ∈ Rn as
Df(y) = (D1f(y), . . . , Dnf(y)). Then, applying the Chain Rule, we obtain:

g′(t) = f ′(h(t))·h′(t) = f ′(tx)·h′(t) = (D1f(tx), . . . , Dnf(tx))·(x1, . . . , xn)T =
n∑
i=1

xiDif(tx).

Plugging in t = 1, we obtain g′(1) =
∑n

i=1 xiDif(x). Therefore, since g′(1) equals both∑n
i=1 xiDif(x) and mf(x), we conclude that

∑n
i=1 xiDif(x) = mf(x), as required.
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6. Given any differentiable function f : Rn → R such that f(0) = 0, we will prove that there exist
functions gi : Rn → R such that:

f(x) =
n∑
i=1

xigi(x).

(Note: Following the grader’s advice, the solution below was edited to clean up the presentation
after it was graded.)
We will define the functions gi as follows. For x = 0, we define gi(0) = 0 for all 1 ≤ i ≤ n. Next,
for any point x 6= 0, x has at least one nonzero coordinate. Then, we can define the values gj(x)
at this point x as follows:

gj(x) =


f(x)
xj
, if j is the smallest index such that xj is nonzero;

0, otherwise.

It remains to show that f(x) =
∑n

i=1 xigi(x) at all points x ∈ Rn. If x = 0, we have:

LHS = f(0) RHS =
n∑
i=1

0 · gi(0)

= 0 = 0,

so LHS = RHS. If x 6= 0, x has at least one nonzero coordinate, so let j be the smallest index
such that xj is nonzero. Then, we obtain:

RHS =
n∑
i=1

xigi(x)

=
∑

1≤i≤n
i 6=j

xigi(x) + xjgj(x)

=
∑

1≤i≤n
i 6=j

xi · 0 + xj ·
f(x)

xj
(Applying definitions of gi(x) and gj(x))

= 0 + f(x)

= LHS,

so LHS = RHS. Overall, we proved that our choices for gi : Rn → R satisfy f(x) =
∑n

i=1 xigi(x)
for all x ∈ Rn, as required.
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Notes on intuition

Now, let us develop some intuition on how to approach these problems and find these solutions. (Note:
This section was not submitted on Crowdmark.)

1. Overall, all sub-problems of this problem had f(x, y) defined as some integral, which motivates us
to solve all of them using the Fundamental Theorem of Calculus. In fact, this approach works for
the entire problem, with some small tricks for a few sub-problems. For instance, part (b) needed
the standard trick of reversing the integral’s direction from

∫ x
y g to −

∫ y
x g. Moreover, part (d)

may seem intimidating at first, but after we use the Chain Rule to solve parts (a) and (c), this
helps us to realize that the Chain Rule also helps with part (d).

2. Since we are finding D2f(1, y), we only care about how f changes along the y-direction, so we
might as well plug in x = 1 directly and keep x constant. It turns out that plugging in x = 1
simplifies the problem dramatically, and it is easy to finish. (This question may remind you of the
social media posts of the form ”Find (complicated and scary expression) · 0”.)

3. First, for part (a), we observe that the first integral is independent of y, so it will not change
when we move along the y-direction to find D2f(x, y). Then, we focus on the second integral,
which is relatively simple to differentiate along y, similarly to Problem 1.
Next, the problem statement for part (b) is very similar to the statement for part (a). This
helps us to infer that the solution for part (b) will mirror that of part (a). Indeed, we construct
fb : R2 → R such that:

• The first integral in fb is independent of x, similarly to how the first integral of f is inde-
pendent of y.

• The second integral in fb is easy to differentiate with the Fundamental Theorem of Calculus,
with x only appearing once in the expression, similarly to the second integral of f .

Now, it is trickier to construct fc and fd for parts (c) and (d) because we care about partial
derivatives along both directions. For part (c), we notice that D1fc(x, y) only depends on x and
that D2fc(x, y) only depends on y. In other words, the change in the x-direction only depends on
x, and the change in the y-direction only depends on y. This suggests that fc can be decomposed
into a component which only depends on x and a component which only depends on y. Indeed,
the integral of x with respect to x is 1

2x
2, so we deduce that the x-component should be 1

2x
2,

and we deduce similarly that the y-component should be 1
2y

2. Thus, fc(x, y) =
1
2x

2 + 1
2y

2.
We cannot use the same trick for part (d). Instead, we could try to integrate y along x to obtain
xy. In fact, once we try fd(x, y) := xy, we discover that this fd already works, so we are done.

4. (a) Intuitively, Dxf(a) represents the rate of change of f along the x-direction, so Deif(a)
represents the rate of change along the ei-direction. On the other hand, we also defined the
partial derivative Dif(a) so that it represents the rate of change along the ei-direction. This tells
us that the equality Deif(a) = Dif(a) should follow from the definitions of Dei and Di – indeed,
our solution confirms this.
(b) Intuitively, when we travel along the tx-direction, then f should change t times as fast as
when we travel along the x-direction. Then, in some sense, the situation for Dtxf(a) is essentially
the situation for Dxf(a), scaled by a factor of t. This motivates us to consider ε

|t| and δ′

|t| in our
solution. Then, the rest of the solution consists of epsilon-delta formalities.
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(c) Our proof that Dxf(a) = Df(a)(x) is motivated by the solution for part (a). Since we are
differentiating along the x-direction instead of the ei-direction, we also have to consider scalings
of ε and δ by a factor of |x|, similarly to part (b). From here on, the proof for Dxf(a) = Df(a)(x)
mostly consists of epsilon-delta formalities. Finally, the proof for Dx+yf(a) = Dxf(a) +Dyf(a)
follows almost directly from plugging in Dxf(a) = Df(a)(x).

5. Our solution for this problem is strongly motivated by the textbook’s hint. Let us discuss how
one might be able to approach this problem without the hint:

• First, consider the left-hand side,
∑n

i=1 xiDif(x). Each term Dif(x) means the partial
derivative in the ei-direction (where e1, . . . , en is the standard basis of Rn), and each coeffi-
cient xi means that we move in the ei direction at a rate of xi. Combining these movements,
we find that we are observing the change in f as we move in the x-direction. This procedure
reminds us of the directional derivative introduced in Problem 4.

• Additionally, we hope to use homogeneity somewhere in our solution, and we can only use
it for multiples of x. In other words, starting from x, we must move in the x-direction
to continue obtaining multiples of x. This is a second hint that we should consider the
directional derivative in the x-direction.

Combining these hints, we formalize this directional derivative idea using g(t) := f(tx), which
inputs multiples of x into f . Finally, it is relatively straightforward to apply this definition and
compute g′(1) to solve this problem.

6. We presented an unconventional solution, in the sense that it does not use calculus. This solution
was motivated by the fact that writing f(x) as a sum:

f(x) =

n∑
i=1

gi(x)xi

amounts to writing f(x) as a linear combination of the xi-coordinates. Note that f(x), x1, . . . , xn
are in the one-dimensional vector space R1. Then, if one of the vectors x1, . . . , xn is nonzero,
then (x1, . . . , xn) will span R1, which allows the linear combination above to exist. This approach
will work for all nonzero x ∈ Rn, and the special case x = 0 is easy once we are given f(0) = 0.
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