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1. If f : Rn → Rm is differentiable at some a ∈ Rn, we will prove that f is also continuous at a.
First, by definition, we have f(a+ h)− f(a)−Df(a)(h) ∈ o(h), so:

lim
h→0

∣∣f(a+ h)− f(a)−Df(a)(h)
∣∣

|h|
= 0. (∗)

Now, to prove that f is continuous at a, suppose we are given any ε > 0. Then, by (∗), there
exists some δ′ > 0 such that all h ∈ Rn which satisfy 0 < |h− 0| < δ′ also satisfy:∣∣∣∣∣

∣∣f(a+ h)− f(a)−Df(a)(h)
∣∣

|h|
− 0

∣∣∣∣∣ < ε,

which can be rewritten as: ∣∣f(a+ h)− f(a)−Df(a)(h)
∣∣ < ε|h| .

Then, by the triangle inequality, we obtain:

ε|h| >
∣∣f(a+ h)− f(a)−Df(a)(h)

∣∣ ≥ ∣∣f(a+ h)− f(a)
∣∣−∣∣Df(a)(h)∣∣ ,

which can be rewritten as: ∣∣f(a+ h)− f(a)
∣∣ < ε|h|+

∣∣Df(a)(h)∣∣ .
Now, since Df(a) is a linear map which acts on h, Assignment 1 Question 2 gives us some M ∈ R
such that

∣∣Df(a)(h)∣∣ ≤ M |h| for all h ∈ Rn. (We can assume without loss of generality that
M > 0; otherwise, we could pick any M ′ > 0, and it would satisfy

∣∣Df(a)(h)∣∣ ≤ M |h| ≤ M ′|h|
for all h ∈ Rn.) Plugging

∣∣Df(a)(h)∣∣ ≤M |h| into the above inequality, we obtain:∣∣f(a+ h)− f(a)
∣∣ < ε|h|+M |h| = (M + ε)|h| . (∗∗)

Note that this result is true for all h ∈ Rn which satisfy 0 < |h− 0| < δ′.
Now, let us define δ := min(δ′, ε

M+ε) > 0. Then, for all x ∈ Rn which satisfy 0 < |x− a| < δ, we
can define h := x − a, giving us 0 < |h| < δ. Since 0 < |h| < δ ≤ δ′, the inequality (∗∗) applies
to h. We also have |h| < δ ≤ ε

M+ε . Plugging this into (∗∗), we obtain:∣∣f(x)− f(a)∣∣ = ∣∣f(a+ h)− f(a)
∣∣ < (M + ε)|h| < (M + ε)

ε

M + ε
= ε.

Therefore, for all ε > 0, we found δ > 0 such that all x ∈ Rn which satisfy |x− a| < δ also satisfy∣∣f(x)− f(a)∣∣ < ε, so f is continuous at a, as required.
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2. (Note: This question was not marked.)
We are given some continuous function g : S1 → R such that g(0, 1) = g(1, 0) = 0 and
g(−x) = −g(x). We also define f : R2 → R by f(0) = 0 and by f(x) = |x| g( x|x|) for all nonzero
x.
a) We will prove that given any x0 ∈ R2, the function h : R → R defined by h(t) := f(tx0) is
differentiable.
First, for the special case x0 = 0, we have h(t) = f(t · 0) = 0 for all t ∈ R, so by Spivak’s
Theorem 2-3(1), h is differentiable with Dh(a) = 0 for all a ∈ R.
Now, suppose that x0 is nonzero. Then, we can scale x0 to define the point y := x0

|x0| ∈ S
1. Next,

we will prove for the following three cases that h(t) = |x0| g(y)t:
Case 1: t > 0. Then, we have |tx0| = |t||x0| = t|x0|, so:

h(t) = f(tx0) = |tx0| g(
tx0
|tx0|

) = t|x0| g(
tx0
t|x0|

) = t|x0| g(
x0
|x0|

) = |x0| g(y)t.

Case 2: t = 0. Then, we have:

h(t) = f(0 · x0) = f(0) = 0 = |x0| g(y) · 0 = |x0| g(y)t.

Case 3: t < 0. Then, we have |tx0| = |t||x0| = −t|x0|, so:

h(t) = f(tx0) = |tx0| g(
tx0
|tx0|

) = t|x0| (−g(
tx0
−t|x0|

)) = t|x0| (−g(−y)) = |x0| g(y)t.

Therefore, in all three cases, we obtain h(t) = |x0| g(y)t. Since |x0| g(y) is constant, it follows
that h is a linear map with matrix (|x0| g(y)). Then, Spivak’s Theorem 2-3(2) states that h is
differentiable, with Dh(t) = h for all t ∈ R. Overall, h is differentiable no matter whether x0 is
zero or nonzero, as required.
b) We will prove that f is differentiable at (0, 0) if and only if g = 0.
First, if g = 0, then we have f(0) = 0, as well as f(x) = |x| g( x|x|) = 0 for all nonzero x. As

a result, f is the constant function 0. Then, by Spivak’s Theorem 2-3(1), f is differentiable at
(0, 0) with Df(0, 0) = 0, as desired.
Next, suppose that g is not zero everywhere, so there exists some z ∈ S1 such that g(z) 6= 0.
Then, assume for contradiction that f is differentiable at (0, 0). By definition, this gives us that
the error function f((0, 0) + h)− f(0, 0)−Df(0, 0)(h) is in o(h), so:

lim
h→0

∣∣f((0, 0) + h)− f(0, 0)−Df(0, 0)(h)
∣∣

|h|
= 0.

Applying f(0, 0) = 0, this limit can be rewritten as:

lim
h→0

∣∣f(h)−Df(0, 0)(h)∣∣
|h|

= 0.

In other words, for all ε > 0, there exists δ > 0 such that all h ∈ R2 which satisfy 0 < |h− 0| < δ
also satisfy: ∣∣f(h)−Df(0, 0)(h)∣∣

|h|
=

∣∣∣∣∣
∣∣f(h)−Df(0, 0)(h)∣∣

|h|
− 0

∣∣∣∣∣ < ε. (∗)
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Now, consider h1 = ( δ2 , 0) ∈ R2. First, we have:

0 < |h1 − 0| =

√(
δ

2

)2

+ 02 =
δ

2
< δ.

As a result, we can plug h = h1 into (∗), so:

ε >

∣∣∣f( δ2 , 0)−Df(0, 0)( δ2 , 0)∣∣∣∣∣∣( δ2 , 0)∣∣∣
=

∣∣∣∣∣∣∣( δ2 , 0)∣∣∣ g( ( δ
2
,0)

|( δ2 ,0)|
)−Df(0, 0)( δ2 , 0)

∣∣∣∣∣∣∣( δ2 , 0)∣∣∣
=

∣∣∣ δ2g(1, 0)−Df(0, 0)( δ2 , 0)∣∣∣
δ
2

=

∣∣∣ δ2g(1, 0)− δ
2Df(0, 0)(1, 0)

∣∣∣
δ
2

(Since Df(0, 0) is a linear map)

=
∣∣g(1, 0)−Df(0, 0)(1, 0)∣∣

=
∣∣0−Df(0, 0)(1, 0)∣∣

=
∣∣Df(0, 0)(1, 0)∣∣

Next, consider h2 = (0, δ2) ∈ R2. First, we have:

0 < |h2 − 0| =

√
02 +

(
δ

2

)2

=
δ

2
< δ.

As a result, we can plug h = h2 into (∗), so:

ε >

∣∣∣f(0, δ2)−Df(0, 0)(0, δ2)∣∣∣∣∣∣(0, δ2)∣∣∣
=

∣∣∣∣∣∣∣(0, δ2)∣∣∣ g( (0, δ
2
)

|(0, δ2 )|
)−Df(0, 0)(0, δ2)

∣∣∣∣∣∣∣(0, δ2)∣∣∣
=

∣∣∣ δ2g(0, 1)−Df(0, 0)(0, δ2)∣∣∣
δ
2

=

∣∣∣ δ2g(0, 1)− δ
2Df(0, 0)(0, 1)

∣∣∣
δ
2

(Since Df(0, 0) is a linear map)

=
∣∣g(0, 1)−Df(0, 0)(0, 1)∣∣

=
∣∣0−Df(0, 0)(0, 1)∣∣

=
∣∣Df(0, 0)(0, 1)∣∣
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Finally, consider h3 = δ
2z ∈ R2, where z ∈ S1 was chosen above such that g(z) 6= 0. First, we

have:

0 < |h3 − 0| =
∣∣∣∣δ2z
∣∣∣∣ = ∣∣∣∣δ2

∣∣∣∣|z| = δ

2
· 1 < δ.

As a result, we can plug h = h3 into (∗), so:

ε >

∣∣∣f( δ2z)−Df(0, 0)( δ2z)∣∣∣∣∣∣ δ2z∣∣∣
=

∣∣∣∣∣∣∣ δ2z∣∣∣ g( δ
2
z

| δ2 z|
)−Df(0, 0)( δ2z)

∣∣∣∣∣∣∣ δ2z∣∣∣
=

∣∣∣∣ δ2g( δ
2
z
δ
2

)−Df(0, 0)( δ2z)
∣∣∣∣

δ
2

=

∣∣∣ δ2g(z)− δ
2Df(0, 0)(z)

∣∣∣
δ
2

(Since Df(0, 0) is a linear map)

=
∣∣g(z)−Df(0, 0)(z)∣∣

Overall, we proved that
∣∣Df(0, 0)(1, 0)∣∣ and

∣∣Df(0, 0)(0, 1)∣∣ are both less than ε for all ε > 0.
This implies that

∣∣Df(0, 0)(1, 0)∣∣ = ∣∣Df(0, 0)(0, 1)∣∣ = 0, so Df(0, 0)(1, 0) = Df(0, 0)(0, 1) = 0.
Then, since (1, 0) and (0, 1) form a basis for R2, it follows that Df(0, 0) is the zero map. We
also proved that

∣∣g(z)−Df(0, 0)(z)∣∣ < ε for all ε > 0, which implies
∣∣g(z)−Df(0, 0)(z)∣∣ = 0,

so Df(0, 0)(z) = g(z). Since Df(0, 0) is the zero map, this contradicts g(z) 6= 0. Thus, by
contradiction, f is not differentiable at (0, 0) if g is not zero everywhere.
Overall, we proved that f is differentiable at (0, 0) if and only if g is zero everywhere, as required.
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3. Given any function f : Rn → R such that
∣∣f(x)∣∣ ≤|x|2, we will prove that f is differentiable at

0. In fact, we will prove that the differential of f at 0 is 0.
Let us define the linear transformation L : Rn → R by L(h) = 0 for all h ∈ Rn. Then, to show
that Df(0) = L, we need to show that the error function:

e(h) := f(0 + h)− f(0)− L(h) = f(h)− f(0)− L(h)

is in o(h). First, since
∣∣f(0)∣∣ ≤ |0|2 = 0, we obtain f(0) = 0 by the positive definiteness of the

norm. We also know that L(h) = 0 for all h, so:

e(h) = f(h)− f(0)− L(h) = f(h)− 0− 0 = f(h)

for all h ∈ Rn. As a result, e(0) = f(0) = 0.

Now, we wish to show that limh→0
|e(h)|
|h| = 0. Let any ε > 0 be given. Then, let us define

δ := ε > 0. For all h ∈ Rn such that 0 < |h− 0| < δ, we obtain:∣∣∣∣∣
∣∣e(h)∣∣
|h|

− 0

∣∣∣∣∣ =
∣∣e(h)∣∣
|h|

≤ |h|
2

|h|
= |h|
< δ

= ε.

Therefore, for all ε > 0, we found δ > 0 such that all h ∈ Rn which satisfy 0 < |h− 0| < δ also

satisfy

∣∣∣∣|e(h)||h| − 0

∣∣∣∣ < ε, so limh→0
|e(h)|
|h| = 0. This, combined with e(0) = 0, proves that e(h) is in

o(h). Therefore, it follows that f is differentiable at 0 with Df(0) = L = 0, as required.
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4. We will evaluate f ′ for the following functions:
a) f(x, y, z) := xy.
First, let f1 : R3 → R2, f2 : R2 → R, and f3 : R → R be defined by f1(x, y, z) := (log(x), y),
f2(x, y) := xy, and f3(x) := ex. Then, we can write f as the following composition:

f(x, y, z) = xy = (elog(x))y = elog(x)y = f3(f2(f1(x, y, z))) = (f3 ◦ f2 ◦ f1)(x, y, z).

Now, from MAT157, we know that f ′3(a) = (ea) for all a ∈ R. As a result:

f ′3(f2(f1(x, y, z))) = f ′3(f2(log(x), y)) = f ′3(log(x)y) = (elog(x)y) = (xy).

Next, from Spivak’s Theorem 2-3(5), we know that f ′2(a, b) = (b, a) for all (a, b) ∈ R2, so:

f ′2(f1(x, y, z)) = f ′2(log(x), y) = (y, log(x)).

Finally, we wish to evaluate f ′1(x, y, z). First, we can decompose f1 further into f1 = (g1, g2),
where the functions g1, g2 : R3 → R are defined by g1(x, y, z) := log(x) and g2(x, y, z) := y.
To evaluate g′1(x, y, z), we write g1 as the composition h2 ◦ h1, where h1 : R3 → R is defined
by h1(x, y, z) := x, and h2 : R → R is defined by h2(x) := log(x). Finally, we can find these
derivatives. Since h1 is the linear transformation with matrix (1, 0, 0), Spivak’s Theorem 2-3(2)
tells us that h′1(x, y, z) = (1, 0, 0), and MAT157 also tells us that h′2(x) =

1
x . Thus, the Chain

Rule gives us:

g′1(x, y, z) = h′2(h1(x, y, z)) · h′1(x, y, z) = h′2(x) · (1, 0, 0) = (
1

x
) · (1, 0, 0) = (

1

x
, 0, 0).

Meanwhile, since g2 is a linear transformation with the matrix (0, 1, 0), Spivak’s Theorem 2-3(2)
tells us that g2(x, y, z) = (0, 1, 0). Overall, applying Spivak’s Theorem 2-3(3), we obtain:

f ′1(x, y, z) =

(
g′1(x, y, z)
g′2(x, y, z)

)
=

(
1
x 0 0
0 1 0

)
.

Finally, applying the Chain Rule twice on f = f3 ◦ f2 ◦ f1, we obtain:

f ′(x, y, z) = (f3 ◦ f2)′(f1(x, y, z)) · f ′1(x, y, z)
= f ′3(f2(f1(x, y, z))) · f ′2(f1(x, y, z)) · f ′1(x, y, z)

= (xy) · (y, log(x)) ·

(
1
x 0 0
0 1 0

)
= (xy) · (y

x
, log(x), 0)

= (xy−1y, xy log(x), 0)

b) f(x, y, z) := (xy, z).
First, we decompose f into f = (f1, f2), where f1 : R3 → R is defined by f1(x, y, z) := xy and
f2 : R3 → R is defined by f2(x, y, z) := z. Then, from part a), f ′1(x, y, z) = (xy−1y, xy log(x), 0).
Moreover, f2 is a linear transformation with the matrix (0, 0, 1), so we know from Spivak’s Theorem
2-3(2) that f ′2(x, y, z) = (0, 0, 1). Therefore, applying Spivak’s Theorem 2-3(3), we obtain:

f ′(x, y, z) =

(
f ′1(x, y, z)
f ′2(x, y, z)

)
=

(
xy−1y xy log(x) 0

0 0 1

)
.
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c) f(x, y, z) := (x+ y)z.
First, let us define the functions f1 : R3 → R3 and f2 : R3 → R by f1(x, y, z) := (x + y, z, 0)
and f2(x, y, z) := xy. Then, we can write f(x, y, z) as the following composition:

f(x, y, z) = (x+ y)z = f2(x+ y, z, 0) = (f2 ◦ f1)(x, y, z).

Now, from part a), we know that f ′2(x, y, z) = (xy−1y, xy log(x), 0), so we obtain:

f ′2(f1(x, y, z)) = f ′2(x+ y, z, 0) = ((x+ y)z−1z, (x+ y)z log(x+ y), 0).

Additionally, since f1 is a linear transformation with the matrix

1 1 0
0 0 1
0 0 0

, Spivak’s Theorem

2-3(2) tells us that f ′1(x, y, z) =

1 1 0
0 0 1
0 0 0

. Therefore, applying the Chain Rule on f = f2 ◦ f1,

we obtain:

f ′(x, y, z) = f ′2(f1(x, y, z)) · f ′1(x, y, z)

= ((x+ y)z−1z, (x+ y)z log(x+ y), 0) ·

1 1 0
0 0 1
0 0 0


= ((x+ y)z−1z, (x+ y)z−1z, (x+ y)z log(x+ y)) .

8



5. a) We will prove that if f : Rn × Rm → Rp is bilinear, then:

lim
(h,k)→0

∣∣f(h, k)∣∣∣∣(h, k)∣∣ = 0.

First, for all 1 ≤ i ≤ n, let ei be the point in Rn with its ith coordinate equal to 1 and all other
coordinates equal to 0. Then, let gi : Rm → Rp be the linear map defined by gi(k) := f(ei, k)
for all k ∈ Rm – this map is linear because ei is constant. Now, in Assignment 1 Question 2, we
proved that there exists some Mi ∈ R such that

∣∣gi(k)∣∣ ≤Mi|k| for all k ∈ Rm. We can assume
without loss of generality that Mi > 0; otherwise, we could pick any M ′i > 0, and it would satisfy∣∣gi(k)∣∣ ≤Mi|k| ≤M ′i |k|.
Next, for all h = (h1, . . . , hn) ∈ Rn, we have h = h1e1 + · · · + hnen. Then, since f is bilinear,
we obtain:∣∣f(h, k)∣∣ = ∣∣f(h1e1 + · · ·+ hnen, k)

∣∣
=
∣∣h1f(e1, k) + · · ·+ hnf(en, k)

∣∣
≤
∣∣h1f(e1, k)∣∣+ · · ·+∣∣hnf(en, k)∣∣ (Applying triangle inequality)

= |h1|
∣∣f(e1, k)∣∣+ · · ·+|hn|∣∣f(en, k)∣∣

= |h1|
∣∣g1(k)∣∣+ · · ·+|hn|∣∣gn(k)∣∣

≤|h1|M1|k|+ · · ·+|hn|Mn|k|
= (M1|h1|+ · · ·+Mn|hn|)|k|

Now, let us define M := max(M1, . . . ,Mn) > 0. Then, we obtain:∣∣f(h, k)∣∣ ≤ (M1|h1|+ · · ·+Mn|hn|)|k| ≤M(|h1|+ · · ·+|hn|)|k| .

Next, let us define the point z = (z1, . . . , zn) ∈ Rn by zi = −1 if hi is negative, and zi = 1
otherwise. In other words, zihi = |hi|. Then, by the Cauchy-Schwarz inequality, we obtain:

〈h, z〉 ≤|h| ·|z|

h1z1 + · · ·+ hnzn ≤|h| ·
√
z21 + · · ·+ z2n

|h1|+ · · ·+|hn| ≤|h| ·
√

(±1)2 + · · ·+ (±1)2

|h1|+ · · ·+|hn| ≤
√
n|h|

As a result, we obtain: ∣∣f(h, k)∣∣ ≤M(|h1|+ · · ·+|hn|)|k| ≤M
√
n|h||k| .

Now, since (|h| −|k|)2 ≥ 0, we have |h|2 − 2|h||k|+|k|2 ≥ 0, so:

|h||k| ≤ 1

2
(|h|2 +|k|2) = 1

2

∣∣(h, k)∣∣2 .
Finally, we obtain: ∣∣f(h, k)∣∣∣∣(h, k)∣∣ ≤ M

√
n|h||k|∣∣(h, k)∣∣ ≤ M

√
n

2

∣∣(h, k)∣∣
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for all nonzero (h, k).
Now, given any ε > 0, let us define δ := 2ε

M
√
n
> 0. Then, for all (h, k) ∈ Rn × Rm satisfying

0 <
∣∣(h, k)− 0

∣∣ < δ, we obtain:∣∣∣∣∣
∣∣f(h, k)∣∣∣∣(h, k)∣∣ − 0

∣∣∣∣∣ =
∣∣f(h, k)∣∣∣∣(h, k)∣∣ ≤ M

√
n

2

∣∣(h, k)∣∣ < M
√
n

2
δ = ε.

Therefore, for all ε > 0, we found δ > 0 such that all (h, k) which satisfy 0 <
∣∣(h, k)− 0

∣∣ < δ

also satisfy

∣∣∣∣|f(h,k)||(h,k)| − 0

∣∣∣∣ < ε, so:

lim
(h,k)→0

∣∣f(h, k)∣∣∣∣(h, k)∣∣ = 0,

as required.
b) We will prove that Df(a, b)(x, y) = f(a, y) + f(x, b) whenever f is bilinear. In particular,
for all points (a, b) ∈ Rn × Rm, let us define the linear map L(a, b) : Rn × Rm → Rp by
L(a, b)(x, y) := f(a, y) + f(x, b). (This map is linear if we treat a and b as constants because f
is bilinear.) Then, by definition of differentiation, we need to show that:

e(h) := f((a, b) + h)− f(a, b)− L(a, b)(h) ∈ o(h).

First, if we decompose h as h = (h1, h2), where h1 ∈ Rn and h2 ∈ Rm, then we can use the fact
that f is bilinear multiple times to obtain:

e(h1, h2) = f(a+ h1, b+ h2)− f(a, b)− L(a, b)(h1, h2)
= f(a+ h1, b+ h2)− f(a, b)− f(a, h2)− f(h1, b) (Applying definition of L(a, b))

= (f(a, b+ h2) + f(h1, b+ h2))− f(a, b)− f(a, h2)− f(h1, b)
= f(a, b+ h2) + f(h1, b+ h2)− f(a, b+ h2)− f(h1, b)
= f(h1, b+ h2)− f(h1, b)
= f(h1, (b+ h2)− b)
= f(h1, h2)

Now, if we plug in h = (h1, h2) = 0, since f is bilinear, we obtain:

e(0) = f(0, 0) = f(0 · 1, 0) = 0 · f(1, 0) = 0.

Moreover, since f is bilinear, part a) gives us that:

lim
(h1,h2)→0

∣∣e(h1, h2)∣∣∣∣(h1, h2)∣∣ = lim
(h1,h2)→0

∣∣f(h1, h2)∣∣∣∣(h1, h2)∣∣ = 0.

These two pieces of information prove that e(h) ∈ o(h). Therefore, we obtain:

Df(a, b)(x, y) = L(a, b)(x, y) = f(a, y) + f(x, b),

as required.
c) We will prove that the formula Dp(a, b)(x, y) = bx+ ay, where p : R× R → R is defined by
p(x, y) = xy, is a special case of part b).
First, we will show that p is bilinear. If y is kept constant, then p(x, y) is a linear transformation in
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terms of x with matrix (y). Additionally, if x is kept constant, then p(x, y) is a linear transformation
in terms of y with matrix (x). Since p is linear in terms of each variable when the other variable
is kept constant, p is bilinear, as desired.
Now, when we apply the formula in part b), we obtain:

Dp(a, b)(x, y) = p(a, y) + p(x, b) = ay + xb = bx+ ay.

Therefore, the formula Dp(a, b)(x, y) = bx+ ay is a special case of part b), as required.
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6. (Note: This question was not marked.)

We will prove that the function f : R4 → R defined by f(a, b, c, d) := det

(
a b
c d

)
= ad − bc is

differentiable, and we will also compute its differential.
First, let us define the functions f1 : R4 → R2 and f2 : R2 → R by f1(a, b, c, d) := (ad, bc) and
f2(a, b) := a−b. Then, we can write f as the composition f = f2 ◦f1. Now, let us decompose f1
further into f1 = (g1, g2), where g1 : R4 → R is defined by g1(a, b, c, d) := ad and g2 : R4 → R
is defined by g2(a, b, c, d) := bc. Then, g1 can be written as a composition g1 = h2 ◦ h1, where
h1 : R4 → R2 is defined by h1(a, b, c, d) = (a, d) and h2 : R2 → R is defined by h2(a, b) = ab.

Since h1 is a linear transformation with matrix

(
1 0 0 0
0 0 0 1

)
, Spivak’s Theorem 2-3(2) gives us

that h1 is differentiable and that h′1(a, b, c, d) =

(
1 0 0 0
0 0 0 1

)
. Additionally, Spivak’s Theorem

2-3(5) states that h2 is also differentiable and that h′2(a, b) = (b, a). Thus, applying the Chain
Rule, g1 = h2 ◦ h1 is differentiable, and:

g′1(a, b, c, d) = h′2(h1(a, b, c, d)) · h′1(a, b, c, d)
= h′2(a, d) · h′1(a, b, c, d)

= (d, a) ·

(
1 0 0 0
0 0 0 1

)
= (d, 0, 0, a).

Similarly, g2 can also be written as a composition g2 = h2 ◦ h3, where h3 : R4 → R2 is defined

by h3(a, b, c, d) = (b, c). Since h3 is a linear transformation with matrix

(
0 1 0 0
0 0 1 0

)
, Spivak’s

Theorem 2-3(2) gives us that h3 is differentiable and that h′3(a, b, c, d) =

(
0 1 0 0
0 0 1 0

)
. Thus,

applying the Chain Rule, g2 = h2 ◦ h3 is differentiable, and:

g′2(a, b, c, d) = h′2(h3(a, b, c, d)) · h′3(a, b, c, d)
= h′2(b, c) · h′3(a, b, c, d)

= (c, b) ·

(
0 1 0 0
0 0 1 0

)
= (0, c, b, 0).

Now, by Spivak’s Theorem 2-3(3), the function f1 = (g1, g2) is differentiable, and:

f ′1(a, b, c, d) =

(
g′1(a, b, c, d)
g′2(a, b, c, d)

)
=

(
d 0 0 a
0 c b 0

)
.

Next, since the function f2(a, b) = a− b is a linear transformation with matrix (1,−1), Spivak’s
Theorem 2-3(2) gives us that f2 is differentiable and that f ′2(a, b) = (1,−1). Finally, applying
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the Chain Rule, the function f = f2 ◦ f1 is differentiable, and we obtain:

f ′(a, b, c, d) = f ′2(f1(a, b, c, d)) · f ′1(a, b, c, d)

= (1,−1) ·

(
d 0 0 a
0 c b 0

)
= (d,−c,−b, a) .
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Notes on Intuition

Now, let’s develop some intuition on how to approach these problems and find solutions for them. (Note:
This section was not submitted on Crowdmark.)

1. We wish to prove that f is continuous at a. Since f is diffable at a, we know that f(a+h)−f(a)
equals a linear correction L(h), plus a ”tiny” error function e(h). As a result, we can model our
solution after A2 Q4 (where we proved that linear transformations are continuous). Due to the
”tiny” error function, our solution also required some modifications where we place a linear bound
(such as ε|h|) on the ”tiny” error function.

2. a) First, we will provide an intuitive explanation of the formula f(x) := |x| g( x|x|). The expression
x
|x| rescales x to project it onto the unit circle S1 so that we can input it into g. Then, we multiply

the output by |x| to scale it according to the size of |x|. Now, if we restrict f to any line through
the origin, then the projection of this line onto S1 consists of two diametrically opposite points,
y and −y. This gives us lots of consistency as we input these projections into g. Then, f(tx) is
proportional to ±|tx|, which is itself proportional to ±|t|. Overall, these observations motivate us
to show that h is linear, from which it follows that h is differentiable.
b) When we consider all points h arbitrarily close to (0, 0), based on part a), we can learn about
f(h) by inputting the projection of h into g. These points h can get projected onto any point on
S1. Based on the textbook’s hint, if we choose h which get projected horizontally or vertically
onto S1, then g will output 0, so f will also output 0. Due to linear algebra, this constrains
Df(0, 0) to be zero. However, if we choose h which get projected onto a point z ∈ S1 such that
g(z) 6= 0, then f becomes a nonzero linear map when restricted along the direction of z. This
contradicts Df(0, 0) = 0, which allows us to complete our proof by contradiction.

3. The main idea for this problem is that if
∣∣f(x)∣∣ is bounded by |x|2, where |x|2 becomes ”tiny”

as x approaches 0, then f(x) itself should be tiny. Then, if we want to approximate f(x) as a
linear map where x is near 0, we should choose the zero map. Another way to see this is that |x|2
has a parabolic shape near x = 0, so |x|2 is flat at x = 0, and then f(x) itself is flat at x = 0
since it is bounded by |x|2. This motivates us to choose the linear map L defined by L(h) = 0.
After considering the error function e(h) and performing some computations to determine that
|e(h)|
|h| ≤|h|, this motivates us to select δ = ε in our delta-epsilon proof so that |h| < δ = ε.

4. a) Recall that, in lecture, we computed the differential of the function g(x, y) = x
y by writing it in

the exponential form g(x, y) = elog(x)−log(y). Our solution for f(x, y, z) = xy is heavily motivated
by this proof technique. After writing f in the exponential form f(x, y, z) = elog(x)y, we finish
the problem using the Chain Rule, very similarly to the computation of g′ done in class.
b) We immediately notice that the output of the function f(x, y, z) = (xy, z) contains xy, whose
differential we found in part a), and z, whose differential is relatively easy to find. This motivates
us to decompose the output coordinate-wise, then combine the differentials of the coordinates xy

and z using Spivak’s Theorem 2-3(3).
c) We wish to use part a) to solve part c) directly, except the base and exponent of (x+ y)z are
slightly different. We account for this modification with a linear transformation of the coordinates.
Then, we can finish this problem with the Chain Rule.

5. a) Since f(h, k) is linear in terms of h, we expect f(h, k) to be bounded proportionally to |h|
because of A1 Q2. By the same reasoning, f(h, k) should also be bounded proportionally to k.
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Overall, we wish to show that f(h, k) is bounded proportionally to |h||k|. This product is of degree
2, so it becomes ”tiny” as (h, k) approaches 0, which will help us show that f is ”tiny”.
Now, let us figure out how to prove that f(h, k) is bounded proportionally to |h||k|. By defining
the maps gi(k) := f(ei, k), we use one of the components of f ’s bilinearity (i.e., the fact that f
is linear in terms of k) to bound f proportionally to |k|. Next, we need to bound f proportionally
to |h| as well. To do this, we model our solution after A1 Q2 – note how the key Cauchy-Schwarz
application reappears. As discussed above, once f(h, k) is bounded proportionally to |h||k|, we
are done.
b) The problem already gives us the candidate Df(a, b)(x, y) = f(a, y)+f(x, b) for the differential
of f , so we only need to verify that it satisfies the definition for differentials. When we work to
verify this, the bilinearity of f allows us to make useful simplifications. Finally, when we compute
that the error function is f itself, part a) (along with some technical details) confirms for us that
f is ”tiny”, as desired.
c) This sub-problem was relatively straightforward with a couple of formal steps: Verify that
p(x, y) = xy is bilinear (so that we can apply part b)), then perform some computations after
applying part b).

6. We observe that the determinant, ad − bc, is ultimately a difference of products. Then, this
problem becomes relatively straightforward because we know how to differentiate products (e.g.,
by Spivak’s Theorem 2-3(5)), and we also know how to differentiate differences.
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