MAT257 Assignment 3

(Author's name here)
October 8, 2021

1. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at some $a \in \mathbb{R}^{n}$, we will prove that f is also continuous at a. First, by definition, we have $f(a+h)-f(a)-D f(a)(h) \in o(h)$, so:

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{|f(a+h)-f(a)-D f(a)(h)|}{|h|}=0 . \tag{*}
\end{equation*}
$$

Now, to prove that f is continuous at a, suppose we are given any $\epsilon>0$. Then, by ($*$), there exists some $\delta^{\prime}>0$ such that all $h \in \mathbb{R}^{n}$ which satisfy $0<|h-0|<\delta^{\prime}$ also satisfy:

$$
\left|\frac{|f(a+h)-f(a)-D f(a)(h)|}{|h|}-0\right|<\epsilon,
$$

which can be rewritten as:

$$
|f(a+h)-f(a)-D f(a)(h)|<\epsilon|h| .
$$

Then, by the triangle inequality, we obtain:

$$
\epsilon|h|>|f(a+h)-f(a)-D f(a)(h)| \geq|f(a+h)-f(a)|-|D f(a)(h)|,
$$

which can be rewritten as:

$$
|f(a+h)-f(a)|<\epsilon|h|+|D f(a)(h)| .
$$

Now, since $D f(a)$ is a linear map which acts on h, Assignment 1 Question 2 gives us some $M \in \mathbb{R}$ such that $|D f(a)(h)| \leq M|h|$ for all $h \in \mathbb{R}^{n}$. (We can assume without loss of generality that $M>0$; otherwise, we could pick any $M^{\prime}>0$, and it would satisfy $|D f(a)(h)| \leq M|h| \leq M^{\prime}|h|$ for all $h \in \mathbb{R}^{n}$.) Plugging $|D f(a)(h)| \leq M|h|$ into the above inequality, we obtain:

$$
\begin{equation*}
|f(a+h)-f(a)|<\epsilon|h|+M|h|=(M+\epsilon)|h| . \tag{**}
\end{equation*}
$$

Note that this result is true for all $h \in \mathbb{R}^{n}$ which satisfy $0<|h-0|<\delta^{\prime}$.
Now, let us define $\delta:=\min \left(\delta^{\prime}, \frac{\epsilon}{M+\epsilon}\right)>0$. Then, for all $x \in \mathbb{R}^{n}$ which satisfy $0<|x-a|<\delta$, we can define $h:=x-a$, giving us $0<|h|<\delta$. Since $0<|h|<\delta \leq \delta^{\prime}$, the inequality ($* *$) applies to h. We also have $|h|<\delta \leq \frac{\epsilon}{M+\epsilon}$. Plugging this into ($* *$), we obtain:

$$
|f(x)-f(a)|=|f(a+h)-f(a)|<(M+\epsilon)|h|<(M+\epsilon) \frac{\epsilon}{M+\epsilon}=\epsilon .
$$

Therefore, for all $\epsilon>0$, we found $\delta>0$ such that all $x \in \mathbb{R}^{n}$ which satisfy $|x-a|<\delta$ also satisfy $|f(x)-f(a)|<\epsilon$, so f is continuous at a, as required.
2. (Note: This question was not marked.)

We are given some continuous function $g: S^{1} \rightarrow \mathbb{R}$ such that $g(0,1)=g(1,0)=0$ and $g(-x)=-g(x)$. We also define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(0)=0$ and by $f(x)=|x| g\left(\frac{x}{|x|}\right)$ for all nonzero x.
a) We will prove that given any $x_{0} \in \mathbb{R}^{2}$, the function $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(t):=f\left(t x_{0}\right)$ is differentiable.
First, for the special case $x_{0}=0$, we have $h(t)=f(t \cdot 0)=0$ for all $t \in \mathbb{R}$, so by Spivak's Theorem 2-3(1), h is differentiable with $D h(a)=0$ for all $a \in \mathbb{R}$.
Now, suppose that x_{0} is nonzero. Then, we can scale x_{0} to define the point $y:=\frac{x_{0}}{\left|x_{0}\right|} \in S^{1}$. Next, we will prove for the following three cases that $h(t)=\left|x_{0}\right| g(y) t$:
Case 1: $t>0$. Then, we have $\left|t x_{0}\right|=|t|\left|x_{0}\right|=t\left|x_{0}\right|$, so:

$$
h(t)=f\left(t x_{0}\right)=\left|t x_{0}\right| g\left(\frac{t x_{0}}{\left|t x_{0}\right|}\right)=t\left|x_{0}\right| g\left(\frac{t x_{0}}{t\left|x_{0}\right|}\right)=t\left|x_{0}\right| g\left(\frac{x_{0}}{\left|x_{0}\right|}\right)=\left|x_{0}\right| g(y) t
$$

Case 2: $t=0$. Then, we have:

$$
h(t)=f\left(0 \cdot x_{0}\right)=f(0)=0=\left|x_{0}\right| g(y) \cdot 0=\left|x_{0}\right| g(y) t
$$

Case 3: $t<0$. Then, we have $\left|t x_{0}\right|=|t|\left|x_{0}\right|=-t\left|x_{0}\right|$, so:

$$
h(t)=f\left(t x_{0}\right)=\left|t x_{0}\right| g\left(\frac{t x_{0}}{\left|t x_{0}\right|}\right)=t\left|x_{0}\right|\left(-g\left(\frac{t x_{0}}{-t\left|x_{0}\right|}\right)\right)=t\left|x_{0}\right|(-g(-y))=\left|x_{0}\right| g(y) t
$$

Therefore, in all three cases, we obtain $h(t)=\left|x_{0}\right| g(y) t$. Since $\left|x_{0}\right| g(y)$ is constant, it follows that h is a linear map with matrix $\left(x_{0} \mid g(y)\right)$. Then, Spivak's Theorem 2-3(2) states that h is differentiable, with $D h(t)=h$ for all $t \in \mathbb{R}$. Overall, h is differentiable no matter whether x_{0} is zero or nonzero, as required.
b) We will prove that f is differentiable at $(0,0)$ if and only if $g=0$.

First, if $g=0$, then we have $f(0)=0$, as well as $f(x)=|x| g\left(\frac{x}{|x|}\right)=0$ for all nonzero x. As a result, f is the constant function 0 . Then, by Spivak's Theorem 2-3(1), f is differentiable at $(0,0)$ with $D f(0,0)=0$, as desired.
Next, suppose that g is not zero everywhere, so there exists some $z \in S^{1}$ such that $g(z) \neq 0$. Then, assume for contradiction that f is differentiable at $(0,0)$. By definition, this gives us that the error function $f((0,0)+h)-f(0,0)-D f(0,0)(h)$ is in $o(h)$, so:

$$
\lim _{h \rightarrow 0} \frac{|f((0,0)+h)-f(0,0)-D f(0,0)(h)|}{|h|}=0
$$

Applying $f(0,0)=0$, this limit can be rewritten as:

$$
\lim _{h \rightarrow 0} \frac{|f(h)-D f(0,0)(h)|}{|h|}=0
$$

In other words, for all $\epsilon>0$, there exists $\delta>0$ such that all $h \in \mathbb{R}^{2}$ which satisfy $0<|h-0|<\delta$ also satisfy:

$$
\begin{equation*}
\frac{|f(h)-D f(0,0)(h)|}{|h|}=\left|\frac{|f(h)-D f(0,0)(h)|}{|h|}-0\right|<\epsilon \tag{*}
\end{equation*}
$$

Now, consider $h_{1}=\left(\frac{\delta}{2}, 0\right) \in \mathbb{R}^{2}$. First, we have:

$$
0<\left|h_{1}-0\right|=\sqrt{\left(\frac{\delta}{2}\right)^{2}+0^{2}}=\frac{\delta}{2}<\delta
$$

As a result, we can plug $h=h_{1}$ into $(*)$, so:

$$
\begin{aligned}
\epsilon & >\frac{\left|f\left(\frac{\delta}{2}, 0\right)-D f(0,0)\left(\frac{\delta}{2}, 0\right)\right|}{\left|\left(\frac{\delta}{2}, 0\right)\right|} \\
& =\frac{\left.\left|\left(\frac{\delta}{2}, 0\right)\right| g\left(\frac{\left(\frac{\delta}{2}, 0\right)}{\left.\left(\frac{\delta}{2}, 0\right) \right\rvert\,}\right)-D f(0,0)\left(\frac{\delta}{2}, 0\right) \right\rvert\,}{\left|\left(\frac{\delta}{2}, 0\right)\right|} \\
& =\frac{\left|\frac{\delta}{2} g(1,0)-D f(0,0)\left(\frac{\delta}{2}, 0\right)\right|}{\frac{\delta}{2}} \\
& =\frac{\left|\frac{\delta}{2} g(1,0)-\frac{\delta}{2} D f(0,0)(1,0)\right|}{\frac{\delta}{2}} \\
& =|g(1,0)-D f(0,0)(1,0)| \\
& =|0-D f(0,0)(1,0)| \\
& =|D f(0,0)(1,0)|
\end{aligned}
$$

(Since $D f(0,0)$ is a linear map)

Next, consider $h_{2}=\left(0, \frac{\delta}{2}\right) \in \mathbb{R}^{2}$. First, we have:

$$
0<\left|h_{2}-0\right|=\sqrt{0^{2}+\left(\frac{\delta}{2}\right)^{2}}=\frac{\delta}{2}<\delta .
$$

As a result, we can plug $h=h_{2}$ into (*), so:

$$
\begin{aligned}
\epsilon & >\frac{\left|f\left(0, \frac{\delta}{2}\right)-D f(0,0)\left(0, \frac{\delta}{2}\right)\right|}{\left|\left(0, \frac{\delta}{2}\right)\right|} \\
& =\frac{\left.\left|\left(0, \frac{\delta}{2}\right)\right| g\left(\frac{\left(0, \frac{\delta}{\frac{\delta}{2}}\right)}{\left|\left(0, \frac{\delta}{2}\right)\right|}\right)-D f(0,0)\left(0, \frac{\delta}{2}\right) \right\rvert\,}{\left|\left(0, \frac{\delta}{2}\right)\right|} \\
& =\frac{\left|\frac{\delta}{2} g(0,1)-D f(0,0)\left(0, \frac{\delta}{2}\right)\right|}{\frac{\delta}{2}} \\
& =\frac{\left|\frac{\delta}{2} g(0,1)-\frac{\delta}{2} D f(0,0)(0,1)\right|}{\frac{\delta}{2}} \\
& =|g(0,1)-D f(0,0)(0,1)| \\
& =|0-D f(0,0)(0,1)| \\
& =|D f(0,0)(0,1)|
\end{aligned}
$$

Finally, consider $h_{3}=\frac{\delta}{2} z \in \mathbb{R}^{2}$, where $z \in S^{1}$ was chosen above such that $g(z) \neq 0$. First, we have:

$$
0<\left|h_{3}-0\right|=\left|\frac{\delta}{2} z\right|=\left|\frac{\delta}{2}\right||z|=\frac{\delta}{2} \cdot 1<\delta .
$$

As a result, we can plug $h=h_{3}$ into (*), so:

$$
\begin{aligned}
\epsilon & >\frac{\left|f\left(\frac{\delta}{2} z\right)-D f(0,0)\left(\frac{\delta}{2} z\right)\right|}{\left|\frac{\delta}{2} z\right|} \\
& =\frac{\left.\left|\frac{\delta}{2} z\right| g\left(\frac{\frac{\delta}{2} z}{\left.\Gamma \frac{\delta}{2} z \right\rvert\,}\right)-D f(0,0)\left(\frac{\delta}{2} z\right) \right\rvert\,}{\left|\frac{\delta}{2} z\right|} \\
& =\frac{\left|\frac{\delta}{2} g\left(\frac{\frac{\delta}{2} z}{\frac{\delta}{2}}\right)-D f(0,0)\left(\frac{\delta}{2} z\right)\right|}{\frac{\delta}{2}} \\
& =\frac{\left|\frac{\delta}{2} g(z)-\frac{\delta}{2} D f(0,0)(z)\right|}{\frac{\delta}{2}} \\
& =|g(z)-D f(0,0)(z)|
\end{aligned}
$$

(Since $D f(0,0)$ is a linear map)

Overall, we proved that $|D f(0,0)(1,0)|$ and $|D f(0,0)(0,1)|$ are both less than ϵ for all $\epsilon>0$. This implies that $|D f(0,0)(1,0)|=|D f(0,0)(0,1)|=0$, so $D f(0,0)(1,0)=D f(0,0)(0,1)=0$. Then, since $(1,0)$ and $(0,1)$ form a basis for \mathbb{R}^{2}, it follows that $D f(0,0)$ is the zero map. We also proved that $|g(z)-D f(0,0)(z)|<\epsilon$ for all $\epsilon>0$, which implies $|g(z)-D f(0,0)(z)|=0$, so $D f(0,0)(z)=g(z)$. Since $D f(0,0)$ is the zero map, this contradicts $g(z) \neq 0$. Thus, by contradiction, f is not differentiable at $(0,0)$ if g is not zero everywhere.
Overall, we proved that f is differentiable at $(0,0)$ if and only if g is zero everywhere, as required.
3. Given any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $|f(x)| \leq|x|^{2}$, we will prove that f is differentiable at 0 . In fact, we will prove that the differential of f at 0 is 0 . Let us define the linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $L(h)=0$ for all $h \in \mathbb{R}^{n}$. Then, to show that $D f(0)=L$, we need to show that the error function:

$$
e(h):=f(0+h)-f(0)-L(h)=f(h)-f(0)-L(h)
$$

is in $o(h)$. First, since $|f(0)| \leq|0|^{2}=0$, we obtain $f(0)=0$ by the positive definiteness of the norm. We also know that $L(h)=0$ for all h, so:

$$
e(h)=f(h)-f(0)-L(h)=f(h)-0-0=f(h)
$$

for all $h \in \mathbb{R}^{n}$. As a result, $e(0)=f(0)=0$.
Now, we wish to show that $\lim _{h \rightarrow 0} \frac{|e(h)|}{|h|}=0$. Let any $\epsilon>0$ be given. Then, let us define $\delta:=\epsilon>0$. For all $h \in \mathbb{R}^{n}$ such that $0<|h-0|<\delta$, we obtain:

$$
\begin{aligned}
\left|\frac{|e(h)|}{|h|}-0\right| & =\frac{|e(h)|}{|h|} \\
& \leq \frac{|h|^{2}}{|h|} \\
& =|h| \\
& <\delta \\
& =\epsilon .
\end{aligned}
$$

Therefore, for all $\epsilon>0$, we found $\delta>0$ such that all $h \in \mathbb{R}^{n}$ which satisfy $0<|h-0|<\delta$ also satisfy $\left|\frac{|e(h)|}{|h|}-0\right|<\epsilon$, so $\lim _{h \rightarrow 0} \frac{|e(h)|}{|h|}=0$. This, combined with $e(0)=0$, proves that $e(h)$ is in $o(h)$. Therefore, it follows that f is differentiable at 0 with $D f(0)=L=0$, as required.
4. We will evaluate f^{\prime} for the following functions:
a) $f(x, y, z):=x^{y}$.

First, let $f_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, f_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$, and $f_{3}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f_{1}(x, y, z):=(\log (x), y)$, $f_{2}(x, y):=x y$, and $f_{3}(x):=e^{x}$. Then, we can write f as the following composition:

$$
f(x, y, z)=x^{y}=\left(e^{\log (x)}\right)^{y}=e^{\log (x) y}=f_{3}\left(f_{2}\left(f_{1}(x, y, z)\right)\right)=\left(f_{3} \circ f_{2} \circ f_{1}\right)(x, y, z) .
$$

Now, from MAT157, we know that $f_{3}^{\prime}(a)=\left(e^{a}\right)$ for all $a \in \mathbb{R}$. As a result:

$$
f_{3}^{\prime}\left(f_{2}\left(f_{1}(x, y, z)\right)\right)=f_{3}^{\prime}\left(f_{2}(\log (x), y)\right)=f_{3}^{\prime}(\log (x) y)=\left(e^{\log (x) y}\right)=\left(x^{y}\right) .
$$

Next, from Spivak's Theorem 2-3(5), we know that $f_{2}^{\prime}(a, b)=(b, a)$ for all $(a, b) \in \mathbb{R}^{2}$, so:

$$
f_{2}^{\prime}\left(f_{1}(x, y, z)\right)=f_{2}^{\prime}(\log (x), y)=(y, \log (x)) .
$$

Finally, we wish to evaluate $f_{1}^{\prime}(x, y, z)$. First, we can decompose f_{1} further into $f_{1}=\left(g_{1}, g_{2}\right)$, where the functions $g_{1}, g_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ are defined by $g_{1}(x, y, z):=\log (x)$ and $g_{2}(x, y, z):=y$. To evaluate $g_{1}^{\prime}(x, y, z)$, we write g_{1} as the composition $h_{2} \circ h_{1}$, where $h_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is defined by $h_{1}(x, y, z):=x$, and $h_{2}: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $h_{2}(x):=\log (x)$. Finally, we can find these derivatives. Since h_{1} is the linear transformation with matrix ($1,0,0$), Spivak's Theorem 2-3(2) tells us that $h_{1}^{\prime}(x, y, z)=(1,0,0)$, and MAT157 also tells us that $h_{2}^{\prime}(x)=\frac{1}{x}$. Thus, the Chain Rule gives us:

$$
g_{1}^{\prime}(x, y, z)=h_{2}^{\prime}\left(h_{1}(x, y, z)\right) \cdot h_{1}^{\prime}(x, y, z)=h_{2}^{\prime}(x) \cdot(1,0,0)=\left(\frac{1}{x}\right) \cdot(1,0,0)=\left(\frac{1}{x}, 0,0\right)
$$

Meanwhile, since g_{2} is a linear transformation with the matrix ($0,1,0$), Spivak's Theorem 2-3(2) tells us that $g_{2}(x, y, z)=(0,1,0)$. Overall, applying Spivak's Theorem 2-3(3), we obtain:

$$
f_{1}^{\prime}(x, y, z)=\binom{g_{1}^{\prime}(x, y, z)}{g_{2}^{\prime}(x, y, z)}=\left(\begin{array}{ccc}
\frac{1}{x} & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

Finally, applying the Chain Rule twice on $f=f_{3} \circ f_{2} \circ f_{1}$, we obtain:

$$
\begin{aligned}
f^{\prime}(x, y, z) & =\left(f_{3} \circ f_{2}\right)^{\prime}\left(f_{1}(x, y, z)\right) \cdot f_{1}^{\prime}(x, y, z) \\
& =f_{3}^{\prime}\left(f_{2}\left(f_{1}(x, y, z)\right)\right) \cdot f_{2}^{\prime}\left(f_{1}(x, y, z)\right) \cdot f_{1}^{\prime}(x, y, z) \\
& =\left(x^{y}\right) \cdot(y, \log (x)) \cdot\left(\begin{array}{ccc}
\frac{1}{x} & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
& =\left(x^{y}\right) \cdot\left(\frac{y}{x}, \log (x), 0\right) \\
& =\left(x^{y-1} y, x^{y} \log (x), 0\right)
\end{aligned}
$$

b) $f(x, y, z):=\left(x^{y}, z\right)$.

First, we decompose f into $f=\left(f_{1}, f_{2}\right)$, where $f_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is defined by $f_{1}(x, y, z):=x^{y}$ and $f_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is defined by $f_{2}(x, y, z):=z$. Then, from part a), $f_{1}^{\prime}(x, y, z)=\left(x^{y-1} y, x^{y} \log (x), 0\right)$. Moreover, f_{2} is a linear transformation with the matrix $(0,0,1)$, so we know from Spivak's Theorem 2-3(2) that $f_{2}^{\prime}(x, y, z)=(0,0,1)$. Therefore, applying Spivak's Theorem 2-3(3), we obtain:

$$
f^{\prime}(x, y, z)=\binom{f_{1}^{\prime}(x, y, z)}{f_{2}^{\prime}(x, y, z)}=\left(\begin{array}{ccc}
x^{y-1} y & x^{y} \log (x) & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

c) $f(x, y, z):=(x+y)^{z}$.

First, let us define the functions $f_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $f_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $f_{1}(x, y, z):=(x+y, z, 0)$ and $f_{2}(x, y, z):=x^{y}$. Then, we can write $f(x, y, z)$ as the following composition:

$$
f(x, y, z)=(x+y)^{z}=f_{2}(x+y, z, 0)=\left(f_{2} \circ f_{1}\right)(x, y, z)
$$

Now, from part a), we know that $f_{2}^{\prime}(x, y, z)=\left(x^{y-1} y, x^{y} \log (x), 0\right)$, so we obtain:

$$
f_{2}^{\prime}\left(f_{1}(x, y, z)\right)=f_{2}^{\prime}(x+y, z, 0)=\left((x+y)^{z-1} z,(x+y)^{z} \log (x+y), 0\right)
$$

Additionally, since f_{1} is a linear transformation with the matrix $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$, Spivak's Theorem
2-3(2) tells us that $f_{1}^{\prime}(x, y, z)=\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$. Therefore, applying the Chain Rule on $f=f_{2} \circ f_{1}$, we obtain:

$$
\begin{aligned}
f^{\prime}(x, y, z) & =f_{2}^{\prime}\left(f_{1}(x, y, z)\right) \cdot f_{1}^{\prime}(x, y, z) \\
& =\left((x+y)^{z-1} z,(x+y)^{z} \log (x+y), 0\right) \cdot\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& =\left((x+y)^{z-1} z,(x+y)^{z-1} z,(x+y)^{z} \log (x+y)\right) .
\end{aligned}
$$

5. a) We will prove that if $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ is bilinear, then:

$$
\lim _{(h, k) \rightarrow 0} \frac{|f(h, k)|}{|(h, k)|}=0
$$

First, for all $1 \leq i \leq n$, let e_{i} be the point in \mathbb{R}^{n} with its $i^{\text {th }}$ coordinate equal to 1 and all other coordinates equal to 0 . Then, let $g_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ be the linear map defined by $g_{i}(k):=f\left(e_{i}, k\right)$ for all $k \in \mathbb{R}^{m}$ - this map is linear because e_{i} is constant. Now, in Assignment 1 Question 2, we proved that there exists some $M_{i} \in \mathbb{R}$ such that $\left|g_{i}(k)\right| \leq M_{i}|k|$ for all $k \in \mathbb{R}^{m}$. We can assume without loss of generality that $M_{i}>0$; otherwise, we could pick any $M_{i}^{\prime}>0$, and it would satisfy $\left|g_{i}(k)\right| \leq M_{i}|k| \leq M_{i}^{\prime}|k|$.
Next, for all $h=\left(h_{1}, \ldots, h_{n}\right) \in \mathbb{R}^{n}$, we have $h=h_{1} e_{1}+\cdots+h_{n} e_{n}$. Then, since f is bilinear, we obtain:

$$
\begin{aligned}
|f(h, k)| & =\left|f\left(h_{1} e_{1}+\cdots+h_{n} e_{n}, k\right)\right| \\
& =\left|h_{1} f\left(e_{1}, k\right)+\cdots+h_{n} f\left(e_{n}, k\right)\right| \\
& \leq\left|h_{1} f\left(e_{1}, k\right)\right|+\cdots+\left|h_{n} f\left(e_{n}, k\right)\right| \quad \quad \text { (Applying triangle inequality) } \\
& =\left|h_{1}\right|\left|f\left(e_{1}, k\right)\right|+\cdots+\left|h_{n}\right|\left|f\left(e_{n}, k\right)\right| \\
& =\left|h_{1}\right|\left|g_{1}(k)\right|+\cdots+\left|h_{n}\right|\left|g_{n}(k)\right| \\
& \leq\left|h_{1}\right| M_{1}|k|+\cdots+\left|h_{n}\right| M_{n}|k| \\
& =\left(M_{1}\left|h_{1}\right|+\cdots+M_{n}\left|h_{n}\right|\right)|k|
\end{aligned}
$$

Now, let us define $M:=\max \left(M_{1}, \ldots, M_{n}\right)>0$. Then, we obtain:

$$
|f(h, k)| \leq\left(M_{1}\left|h_{1}\right|+\cdots+M_{n}\left|h_{n}\right|\right)|k| \leq M\left(h_{1}\left|+\cdots+\left|h_{n}\right|\right)|k| .\right.
$$

Next, let us define the point $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{R}^{n}$ by $z_{i}=-1$ if h_{i} is negative, and $z_{i}=1$ otherwise. In other words, $z_{i} h_{i}=\left|h_{i}\right|$. Then, by the Cauchy-Schwarz inequality, we obtain:

$$
\begin{aligned}
\langle h, z\rangle & \leq|h| \cdot|z| \\
h_{1} z_{1}+\cdots+h_{n} z_{n} & \leq|h| \cdot \sqrt{z_{1}^{2}+\cdots+z_{n}^{2}} \\
\left|h_{1}\right|+\cdots+\left|h_{n}\right| & \leq|h| \cdot \sqrt{(\pm 1)^{2}+\cdots+(\pm 1)^{2}} \\
\left|h_{1}\right|+\cdots+\left|h_{n}\right| & \leq \sqrt{n}|h|
\end{aligned}
$$

As a result, we obtain:

$$
|f(h, k)| \leq M\left(h_{1}\left|+\cdots+\left|h_{n}\right|\right)|k| \leq M \sqrt{n}|h||k| .\right.
$$

Now, since $\left(h|-|k|)^{2} \geq 0\right.$, we have $|h|^{2}-2|h||k|+|k|^{2} \geq 0$, so:

$$
|h||k| \leq \frac{1}{2}\left(\left.h\right|^{2}+|k|^{2}\right)=\frac{1}{2}|(h, k)|^{2} .
$$

Finally, we obtain:

$$
\frac{|f(h, k)|}{|(h, k)|} \leq \frac{M \sqrt{n}|h||k|}{|(h, k)|} \leq \frac{M \sqrt{n}}{2}|(h, k)|
$$

for all nonzero (h, k).
Now, given any $\epsilon>0$, let us define $\delta:=\frac{2 \epsilon}{M \sqrt{n}}>0$. Then, for all $(h, k) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ satisfying $0<|(h, k)-0|<\delta$, we obtain:

$$
\left|\frac{|f(h, k)|}{|(h, k)|}-0\right|=\frac{|f(h, k)|}{|(h, k)|} \leq \frac{M \sqrt{n}}{2}|(h, k)|<\frac{M \sqrt{n}}{2} \delta=\epsilon .
$$

Therefore, for all $\epsilon>0$, we found $\delta>0$ such that all (h, k) which satisfy $0<|(h, k)-0|<\delta$ also satisfy $\left|\frac{|f(h, k)|}{|(h, k)|}-0\right|<\epsilon$, so:

$$
\lim _{(h, k) \rightarrow 0} \frac{|f(h, k)|}{|(h, k)|}=0,
$$

as required.
b) We will prove that $\operatorname{Df}(a, b)(x, y)=f(a, y)+f(x, b)$ whenever f is bilinear. In particular, for all points $(a, b) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$, let us define the linear map $L(a, b): \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ by $L(a, b)(x, y):=f(a, y)+f(x, b)$. (This map is linear if we treat a and b as constants because f is bilinear.) Then, by definition of differentiation, we need to show that:

$$
e(h):=f((a, b)+h)-f(a, b)-L(a, b)(h) \in o(h) .
$$

First, if we decompose h as $h=\left(h_{1}, h_{2}\right)$, where $h_{1} \in \mathbb{R}^{n}$ and $h_{2} \in \mathbb{R}^{m}$, then we can use the fact that f is bilinear multiple times to obtain:

$$
\begin{aligned}
e\left(h_{1}, h_{2}\right) & =f\left(a+h_{1}, b+h_{2}\right)-f(a, b)-L(a, b)\left(h_{1}, h_{2}\right) \\
& \left.=f\left(a+h_{1}, b+h_{2}\right)-f(a, b)-f\left(a, h_{2}\right)-f\left(h_{1}, b\right) \quad \text { (Applying definition of } L(a, b)\right) \\
& =\left(f\left(a, b+h_{2}\right)+f\left(h_{1}, b+h_{2}\right)\right)-f(a, b)-f\left(a, h_{2}\right)-f\left(h_{1}, b\right) \\
& =f\left(a, b+h_{2}\right)+f\left(h_{1}, b+h_{2}\right)-f\left(a, b+h_{2}\right)-f\left(h_{1}, b\right) \\
& =f\left(h_{1}, b+h_{2}\right)-f\left(h_{1}, b\right) \\
& =f\left(h_{1},\left(b+h_{2}\right)-b\right) \\
& =f\left(h_{1}, h_{2}\right)
\end{aligned}
$$

Now, if we plug in $h=\left(h_{1}, h_{2}\right)=0$, since f is bilinear, we obtain:

$$
e(0)=f(0,0)=f(0 \cdot 1,0)=0 \cdot f(1,0)=0 .
$$

Moreover, since f is bilinear, part a) gives us that:

$$
\lim _{\left(h_{1}, h_{2}\right) \rightarrow 0} \frac{\left|e\left(h_{1}, h_{2}\right)\right|}{\left|\left(h_{1}, h_{2}\right)\right|}=\lim _{\left(h_{1}, h_{2}\right) \rightarrow 0} \frac{\left|f\left(h_{1}, h_{2}\right)\right|}{\left|\left(h_{1}, h_{2}\right)\right|}=0 .
$$

These two pieces of information prove that $e(h) \in o(h)$. Therefore, we obtain:

$$
D f(a, b)(x, y)=L(a, b)(x, y)=f(a, y)+f(x, b),
$$

as required.
c) We will prove that the formula $D p(a, b)(x, y)=b x+a y$, where $p: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is defined by $p(x, y)=x y$, is a special case of part b$)$.
First, we will show that p is bilinear. If y is kept constant, then $p(x, y)$ is a linear transformation in
terms of x with matrix (y). Additionally, if x is kept constant, then $p(x, y)$ is a linear transformation in terms of y with matrix (x). Since p is linear in terms of each variable when the other variable is kept constant, p is bilinear, as desired.
Now, when we apply the formula in part b), we obtain:

$$
D p(a, b)(x, y)=p(a, y)+p(x, b)=a y+x b=b x+a y .
$$

Therefore, the formula $D p(a, b)(x, y)=b x+a y$ is a special case of part b$)$, as required.
6. (Note: This question was not marked.)

We will prove that the function $f: \mathbb{R}^{4} \rightarrow \mathbb{R}$ defined by $f(a, b, c, d):=\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a d-b c$ is differentiable, and we will also compute its differential.
First, let us define the functions $f_{1}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ and $f_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f_{1}(a, b, c, d):=(a d, b c)$ and $f_{2}(a, b):=a-b$. Then, we can write f as the composition $f=f_{2} \circ f_{1}$. Now, let us decompose f_{1} further into $f_{1}=\left(g_{1}, g_{2}\right)$, where $g_{1}: \mathbb{R}^{4} \rightarrow \mathbb{R}$ is defined by $g_{1}(a, b, c, d):=a d$ and $g_{2}: \mathbb{R}^{4} \rightarrow \mathbb{R}$ is defined by $g_{2}(a, b, c, d):=b c$. Then, g_{1} can be written as a composition $g_{1}=h_{2} \circ h_{1}$, where $h_{1}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ is defined by $h_{1}(a, b, c, d)=(a, d)$ and $h_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $h_{2}(a, b)=a b$. Since h_{1} is a linear transformation with matrix $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$, Spivak's Theorem 2-3(2) gives us that h_{1} is differentiable and that $h_{1}^{\prime}(a, b, c, d)=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$. Additionally, Spivak's Theorem 2-3(5) states that h_{2} is also differentiable and that $h_{2}^{\prime}(a, b)=(b, a)$. Thus, applying the Chain Rule, $g_{1}=h_{2} \circ h_{1}$ is differentiable, and:

$$
\begin{aligned}
g_{1}^{\prime}(a, b, c, d) & =h_{2}^{\prime}\left(h_{1}(a, b, c, d)\right) \cdot h_{1}^{\prime}(a, b, c, d) \\
& =h_{2}^{\prime}(a, d) \cdot h_{1}^{\prime}(a, b, c, d) \\
& =(d, a) \cdot\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =(d, 0,0, a) .
\end{aligned}
$$

Similarly, g_{2} can also be written as a composition $g_{2}=h_{2} \circ h_{3}$, where $h_{3}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ is defined by $h_{3}(a, b, c, d)=(b, c)$. Since h_{3} is a linear transformation with matrix $\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$, Spivak's Theorem 2-3(2) gives us that h_{3} is differentiable and that $h_{3}^{\prime}(a, b, c, d)=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$. Thus, applying the Chain Rule, $g_{2}=h_{2} \circ h_{3}$ is differentiable, and:

$$
\begin{aligned}
g_{2}^{\prime}(a, b, c, d) & =h_{2}^{\prime}\left(h_{3}(a, b, c, d)\right) \cdot h_{3}^{\prime}(a, b, c, d) \\
& =h_{2}^{\prime}(b, c) \cdot h_{3}^{\prime}(a, b, c, d) \\
& =(c, b) \cdot\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& =(0, c, b, 0) .
\end{aligned}
$$

Now, by Spivak's Theorem 2-3(3), the function $f_{1}=\left(g_{1}, g_{2}\right)$ is differentiable, and:

$$
f_{1}^{\prime}(a, b, c, d)=\binom{g_{1}^{\prime}(a, b, c, d)}{g_{2}^{\prime}(a, b, c, d)}=\left(\begin{array}{cccc}
d & 0 & 0 & a \\
0 & c & b & 0
\end{array}\right) .
$$

Next, since the function $f_{2}(a, b)=a-b$ is a linear transformation with matrix $(1,-1)$, Spivak's Theorem 2-3(2) gives us that f_{2} is differentiable and that $f_{2}^{\prime}(a, b)=(1,-1)$. Finally, applying
the Chain Rule, the function $f=f_{2} \circ f_{1}$ is differentiable, and we obtain:

$$
\begin{aligned}
f^{\prime}(a, b, c, d) & =f_{2}^{\prime}\left(f_{1}(a, b, c, d)\right) \cdot f_{1}^{\prime}(a, b, c, d) \\
& =(1,-1) \cdot\left(\begin{array}{llll}
d & 0 & 0 & a \\
0 & c & b & 0
\end{array}\right) \\
& =(d,-c,-b, a) .
\end{aligned}
$$

Notes on Intuition

Now, let's develop some intuition on how to approach these problems and find solutions for them. (Note: This section was not submitted on Crowdmark.)

1. We wish to prove that f is continuous at a. Since f is diffable at a, we know that $f(a+h)-f(a)$ equals a linear correction $L(h)$, plus a "tiny" error function $e(h)$. As a result, we can model our solution after A2 Q4 (where we proved that linear transformations are continuous). Due to the "tiny" error function, our solution also required some modifications where we place a linear bound (such as $\epsilon|h|$) on the "tiny" error function.
2. a) First, we will provide an intuitive explanation of the formula $f(x):=|x| g\left(\frac{x}{|x|}\right)$. The expression $\frac{x}{|x|}$ rescales x to project it onto the unit circle S^{1} so that we can input it into g. Then, we multiply the output by $|x|$ to scale it according to the size of $|x|$. Now, if we restrict f to any line through the origin, then the projection of this line onto S^{1} consists of two diametrically opposite points, y and $-y$. This gives us lots of consistency as we input these projections into g. Then, $f(t x)$ is proportional to $\pm|t x|$, which is itself proportional to $\pm|t|$. Overall, these observations motivate us to show that h is linear, from which it follows that h is differentiable.
b) When we consider all points h arbitrarily close to $(0,0)$, based on part a), we can learn about $f(h)$ by inputting the projection of h into g. These points h can get projected onto any point on S^{1}. Based on the textbook's hint, if we choose h which get projected horizontally or vertically onto S^{1}, then g will output 0 , so f will also output 0 . Due to linear algebra, this constrains $D f(0,0)$ to be zero. However, if we choose h which get projected onto a point $z \in S^{1}$ such that $g(z) \neq 0$, then f becomes a nonzero linear map when restricted along the direction of z. This contradicts $D f(0,0)=0$, which allows us to complete our proof by contradiction.
3. The main idea for this problem is that if $|f(x)|$ is bounded by $|x|^{2}$, where $|x|^{2}$ becomes "tiny" as x approaches 0 , then $f(x)$ itself should be tiny. Then, if we want to approximate $f(x)$ as a linear map where x is near 0 , we should choose the zero map. Another way to see this is that $|x|^{2}$ has a parabolic shape near $x=0$, so $|x|^{2}$ is flat at $x=0$, and then $f(x)$ itself is flat at $x=0$ since it is bounded by $|x|^{2}$. This motivates us to choose the linear map L defined by $L(h)=0$. After considering the error function $e(h)$ and performing some computations to determine that $\frac{|e(h)|}{|h|} \leq|h|$, this motivates us to select $\delta=\epsilon$ in our delta-epsilon proof so that $|h|<\delta=\epsilon$.
4. a) Recall that, in lecture, we computed the differential of the function $g(x, y)=\frac{x}{y}$ by writing it in the exponential form $g(x, y)=e^{\log (x)-\log (y)}$. Our solution for $f(x, y, z)=x^{y}$ is heavily motivated by this proof technique. After writing f in the exponential form $f(x, y, z)=e^{\log (x) y}$, we finish the problem using the Chain Rule, very similarly to the computation of g^{\prime} done in class.
b) We immediately notice that the output of the function $f(x, y, z)=\left(x^{y}, z\right)$ contains x^{y}, whose differential we found in part a), and z, whose differential is relatively easy to find. This motivates us to decompose the output coordinate-wise, then combine the differentials of the coordinates x^{y} and z using Spivak's Theorem 2-3(3).
c) We wish to use part a) to solve part c) directly, except the base and exponent of $(x+y)^{z}$ are slightly different. We account for this modification with a linear transformation of the coordinates. Then, we can finish this problem with the Chain Rule.
5. a) Since $f(h, k)$ is linear in terms of h, we expect $f(h, k)$ to be bounded proportionally to $|h|$ because of A1 Q2. By the same reasoning, $f(h, k)$ should also be bounded proportionally to k.

Overall, we wish to show that $f(h, k)$ is bounded proportionally to $|h||k|$. This product is of degree 2 , so it becomes "tiny" as (h, k) approaches 0 , which will help us show that f is "tiny".
Now, let us figure out how to prove that $f(h, k)$ is bounded proportionally to $|h||k|$. By defining the maps $g_{i}(k):=f\left(e_{i}, k\right)$, we use one of the components of f 's bilinearity (i.e., the fact that f is linear in terms of k) to bound f proportionally to $|k|$. Next, we need to bound f proportionally to $|h|$ as well. To do this, we model our solution after A1 Q2 - note how the key Cauchy-Schwarz application reappears. As discussed above, once $f(h, k)$ is bounded proportionally to $|h||k|$, we are done.
b) The problem already gives us the candidate $D f(a, b)(x, y)=f(a, y)+f(x, b)$ for the differential of f, so we only need to verify that it satisfies the definition for differentials. When we work to verify this, the bilinearity of f allows us to make useful simplifications. Finally, when we compute that the error function is f itself, part a) (along with some technical details) confirms for us that f is "tiny", as desired.
c) This sub-problem was relatively straightforward with a couple of formal steps: Verify that $p(x, y)=x y$ is bilinear (so that we can apply part b)), then perform some computations after applying part b).
6. We observe that the determinant, $a d-b c$, is ultimately a difference of products. Then, this problem becomes relatively straightforward because we know how to differentiate products (e.g., by Spivak's Theorem 2-3(5)), and we also know how to differentiate differences.

