
MAT257 Assignment 2
(Author’s name here)

October 1, 2021



1. a) First, we will find the interior, exterior, and boundary of the set:

A1 = {x ∈ Rn : |x| ≤ 1}.

For all x ∈ Rn, we have the following trichotomy: Either |x| < 1, or |x| = 1, or |x| > 1. We will
consider each case as follows.
Case 1: |x| < 1. Then, let us define the positive number r = 1−|x|, and let us consider the open
ball B centred at x with radius r. For all y ∈ B, we have |y − x| < r = 1 −|x| because B is of
radius r. As a result, the triangle inequality tells us that:

|y| ≤|y − x|+|x− 0| < (1−|x|) +|x| = 1,

so y ∈ A1. In other words, all points inside the open ball B around x are in A1, so x is in the
interior of A1.
Case 2: |x| = 1. Then, for all open sets U around x, there is an open rectangle R =

∏n
i=1(ai, bi)

around x contained in U . If the coordinates of x are x = (x1, . . . , xn), then we have a1 < x1 < b1
because x ∈ R. As a result, we can define the positive number d = min(x1 − a1, b1 − x1), and
we can define the nonzero point z ∈ Rn by z = (d2 , 0, 0, . . . , 0). Since we have:

a1 = x1 − (x1 − a1) ≤ x1 − d < x1 −
d

2
< x1 < b1,

we get x1 − d
2 ∈ (a1, b1), so x − z ∈ R ⊆ U . (Note that subtracting z does not change any of

the coordinates of x other than the first coordinate, so they all remain in their respective intervals
(ai, bi).) Since we also have:

a1 < x1 < x1 +
d

2
< x1 + d ≤ x1 + (b1 − x1) = b1,

we get x1 +
d
2 ∈ (a1, b1), so x + z ∈ R ⊆ U . (Again, all other coordinates of x remain in their

respective intervals (ai, bi) after adding z.) Now, we can compute that:

|x− z|2 +|x+ z|2 = 〈x− z, x− z〉+ 〈x+ z, x+ z〉
= (〈x, x〉 − 〈x, z〉 − 〈z, x〉+ 〈z, z〉) + (〈x, x〉+ 〈x, z〉+ 〈z, x〉+ 〈z, z〉)
= 2〈x, x〉+ 2〈z, z〉
= 2|x|2 + 2|z|2

> 2|x|2 + 0 (|z| > 0 because z 6= 0)

= 2

Thus, since the sum of |x− z|2 and |x+ z|2 is greater than 2, at least one of these terms must
be greater than 2

2 = 1, so at least one of |x− z| or |x+ z| must be greater than 1. This gives us
that at least one of x− z or x+ z is outside A. As a result, every open set U around x contains
some point outside A. All such U also contain x, a point inside A. Thus, x is in the boundary of
A whenever |x| = 1.
Case 3: |x| > 1. Then, let us define the positive number r = |x|−1, and let us consider the open
ball B centred at x with radius r. For all y ∈ B, we have |y − x| < r = |x| − 1 because B is of
radius r. As a result, the triangle inequality tells us that |y|+|x− y| ≥|x|, so:

|y| ≥|x| −|x− y| > |x| − (|x| − 1) = 1,
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so y /∈ A1. In other words, all points inside the open ball B around x are outside A1, so x is in
the exterior of A1.
Summarizing our results, the interior of A1 is the set {x ∈ Rn : |x| < 1}, the boundary of A1 is
the set {x ∈ Rn : |x| = 1}, and the exterior of A1 is the set {x ∈ Rn : |x| > 1}.
b) Next, we will find the interior, exterior, and boundary of the set:

A2 = {x ∈ Rn : |x| = 1}.

Similarly to part a), we will consider the three following cases:
Case 1: |x| < 1. Then, similarly to part a), there exists an open ball B around x such that all
y ∈ B satisfy |y| < 1, giving us y /∈ A2. As a result, x is in the exterior of A2.
Case 2: |x| = 1. Then, similarly to part a), every open set U around x contains some point
y ∈ Rn satisfying |y| > 1, giving us y /∈ A2. Additionally, all such U contains x, which is inside
A2. As a result, x is in the boundary of A2.
Case 3: |x| > 1. Then, similarly to part a), there exists an open ball B around x such that all
y ∈ B satisfy |y| > 1, giving us y /∈ A2. As a result, x is in the exterior of A2.
Summarizing our results, the interior of A2 is empty, the boundary of A2 is A2 itself, and the
exterior of A2 is its complement, Ac2.
c) Finally, we will find the interior, exterior, and boundary of the set:

A3 = {x ∈ Rn : ∀i, xi ∈ Q}.

We claim that all x ∈ Rn are in the boundary of A3. Let U be any open set around x. Then,
there exists an open rectangle R =

∏n
i=1(ai, bi) around x contained in U . For all 1 ≤ i ≤ n,

since Q is dense in R, there exists some rational number ri inside (ai, bi). Then, the point
(r1, r2, . . . , rn) ∈ Rn satisfies (r1, . . . , rn) ∈ R ⊆ U because ri ∈ (ai, bi) for all i. This point is
also inside A3 because all of its coordinates are rational. As a result, U contains a point inside
A3. In the same way, we can prove that R ⊆ U contains some point whose coordinates are all
irrational because the set of all irrational numbers is also dense, and such a point would be outside
A3. Since this is true for all open sets U around x, we conclude that x is in the boundary of A3

for all x ∈ Rn. Therefore, the interior and exterior of A3 are empty, and the boundary of A3 is
Rn, as required.
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2. a) Given some closed set A and some point x /∈ A, we will prove that there is a number d > 0
such that |y − x| ≥ d for all y ∈ A.
First, since A is closed, its complement, Ac, is open. Then, since x ∈ Ac, there exists an open
rectangle R =

∏n
i=1(ai, bi) around x contained in Ac. In other words, if we denote the ith

coordinate of x by xi, then ai < xi < bi for all 1 ≤ i ≤ n. As a result, we can define the positive
number d by:

d = min
1≤i≤n

(min(xi − ai, bi − xi)).

Now, we claim that |y − x| ≥ d for all y ∈ A for our choice of d. Since y ∈ A, and since R ⊆ Ac,
we have y /∈ R. As a result, there exists some 1 ≤ j ≤ n such that yj /∈ (aj , bj). If yj ≤ aj , we
obtain xj − yj ≥ xj − aj ≥ d, and if yj ≥ bj , we obtain yj − xj ≥ bj − xj ≥ d. Either way, we
get
∣∣xj − yj∣∣ ≥ d, so:

|x− y| =

√√√√ n∑
i=1

|xi − yi|2 ≥
√∣∣xj − yj∣∣2 ≥ d.

Therefore, our choice of d > 0 satisfies |y − x| ≥ d for all y ∈ A, as required.
(Based on the grader’s suggestions, here is a cleaner solution for part a) using an open ball instead
of an open rectangle. I added this solution after grading was completed.)
First, since A is closed, its complement, Ac, is open. Then, since x ∈ Ac, there exists an open ball
Bx(r) around x of radius r > 0 contained in Ac. Now, for all y ∈ A, we must have |y − x| ≥ r;
otherwise, if |y − x| < r, we would have y ∈ Bx(r) ⊆ Ac, contradicting y ∈ A. Thus, |y − x| ≥ r
for all y ∈ A. In other words, if we pick d = r > 0, we get |y − x| ≥ d for all y ∈ A, as
required.
b) Given two disjoint sets A,B such that A is closed and B is compact, we will prove that there
exists d > 0 such that |y − x| ≥ d for all x ∈ A and y ∈ B.
First, for all y ∈ B, we know from part a) that there exists a positive number dy such that

|x− y| ≥ dy for all x ∈ A. Then, we can define By to be the open ball of radius
dy
2 around

y. Since each y ∈ By for all y ∈ B, these open balls form an open cover of B. Thus, since B
is compact, there exists a finite subcover By1 , . . . , Byk of B with open balls around y1, . . . , yk,
respectively. Now, we can define the positive real number:

d = min
1≤i≤k

dyi
2
.

Then, we claim that |y − x| ≥ d for all x ∈ A and all y ∈ B for our choice of d. Since y ∈ B, y is
contained in some open ball Byi in our finite subcover of B. Then, by definition of dyi , we have

|x− yi| ≥ dyi . Moreover, since y ∈ Byi , and since Byi is of radius
dyi
2 , we have |y − yi| <

dyi
2 .

As a result, since the triangle inequality gives us |y − x|+|x− yi| ≥|y − yi|, we obtain:

|y − x| ≥|y − yi| −|x− yi| ≥ dyi −
dyi
2

=
dyi
2
≥ d.

Therefore, our choice of d > 0 satisfies |y − x| ≥ d for all x ∈ A and all y ∈ B, as required.
c) Finally, we will give a counterexample in R2 if A and B are closed but neither is compact. Let
us define A to be:

A = {(n, 1
n
) : n ∈ N},

and let us define B to be:

B = {(n,− 1

n
) : n ∈ N}.
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First, A and B are clearly disjoint because all points (x1, x2) ∈ A have a positive x2-coordinate
and all points (x1, x2) ∈ B have a negative x2-coordinate. Moreover, we can show that A and
B are not compact. The family {Un}n∈N of open sets defined by Un = (n − 1, n + 1) × R is
an open cover for both A and B because the points (n, 1n) and (n,− 1

n) are in Un for all n ∈ N.
Moreover, each Un only covers one point in A and B, namely (n, 1n) and (n,− 1

n), respectively.
As a result, since A and B both have infinitely many points, they cannot be covered by a finite
subcover using the Uns, so A and B are both not compact.
Next, we will show that A is closed. Let (x1, x2) be any point in the complement Ac. Then,
consider the four following cases:
Case 1: x1 < 1. Then, consider the open rectangle R = (x1 − 1, 1) × (x2 − 1, x2 + 1). Since
x1 − 1 < x1 < 1 and x2 − 1 < x2 < x2 + 1, we have (x1, x2) ∈ R. Additionally, since all points
in R have an x1-coordinate less than 1, they cannot be in A, so R ⊆ Ac.
Case 2: x1 > 1 and x1 /∈ N. Then, x1 is in some open interval (n, n + 1), where n ∈ N.
Now, consider the open rectangle R = (n, n + 1) × (x2 − 1, x2 + 1). Since x1 ∈ (n, n + 1)
and x2 − 1 < x2 < x2 + 1, we have (x1, x2) ∈ R. Additionally, since all points in R have an
x1-coordinate which is not an integer, they cannot be in A, so R ⊆ Ac.
Case 3: x1 ∈ N and x2 >

1
x1

. Then, consider the open rectangle R = (x1−1, x1+1)×( 1
x1
, x2+1).

Since x1 − 1 < x1 < x1 + 1 and 1
x1
< x2 < x2 + 1, we have (x1, x2) ∈ R. Additionally, the only

integer in the interval (x1 − 1, x1 + 1) is x1, so the only point that could potentially be in R ∩A
is (x1,

1
x1
). Since 1

x1
/∈ ( 1

x1
, x2 + 1), we conclude that R ⊆ Ac.

Case 4: x1 ∈ N and x2 <
1
x1

. Then, consider the open rectangle R = (x1−1, x1+1)×(x2−1, 1
x1
).

Since x1−1 < x1 < x1+1 and x2−1 < x2 <
1
x1

, we have (x1, x2) ∈ R. Additionally, similarly to

Case 3, the only point that could potentially be in R∩A is (x1,
1
x1
), and we know that (x1,

1
x1
) /∈ R

because 1
x1

/∈ (x2 − 1, 1
x1
). Thus, R ⊆ Ac.

Note that these cases are exhaustive – the case ”x1 ∈ N and x2 = 1
x1

” cannot occur because
(x1, x2) /∈ A. As a result, for all (x1, x2) ∈ Ac, we found an open rectangle R around (x1, x2)
contained in Ac, so Ac is open. Thus, A is closed, as desired. In the same way, we can also prove
that B is closed.
Finally, we will prove for all d > 0 that there exist x ∈ A and y ∈ B such that |y − x| < d. Let
us pick a natural number n larger than 2

d , and let us pick x = (n, 1n) ∈ A and y = (n,− 1
n) ∈ B.

Then, we obtain:

|x− y| =

√
(n− n)2 +

(
1

n
−
(
− 1

n

))2

=
2

n
<

2
2
d

= d.

Therefore, our choices of A and B are disjoint, closed, and not compact, and for all d > 0, there
exist x ∈ A and y ∈ B such that |y − x| < d. This proves that A and B are valid counterexamples
in R2, as required.
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3. (Note: This solution was submitted to Crowdmark but not marked.)
If U is open C ⊆ U is compact, we will show that there is a compact set D ⊆ U whose interior
contains C.
First, the results proven in parts a) and b) of Question 2 will be useful to us, so their solutions
are reproduced below for reference:

2. a) Given some closed set A and some point x /∈ A, we will prove that there is a number
d > 0 such that |y − x| ≥ d for all y ∈ A.
First, since A is closed, its complement, Ac, is open. Then, since x ∈ Ac, there exists an open
rectangle R =

∏n
i=1(ai, bi) around x contained in Ac. In other words, if we denote the ith coor-

dinate of x by xi, then ai < xi < bi for all 1 ≤ i ≤ n. As a result, we can define the positive
number d by:

d = min
1≤i≤n

(min(xi − ai, bi − xi)).

Now, we claim that |y − x| ≥ d for all y ∈ A for our choice of d. Since y ∈ A, and since R ⊆ Ac,
we have y /∈ R. As a result, there exists some 1 ≤ j ≤ n such that yj /∈ (aj , bj). If yj ≤ aj , we
obtain xj − yj ≥ xj − aj ≥ d, and if yj ≥ bj , we obtain yj − xj ≥ bj − xj ≥ d. Either way, we
get
∣∣xj − yj∣∣ ≥ d, so:

|x− y| =

√√√√ n∑
i=1

|xi − yi|2 ≥
√∣∣xj − yj∣∣2 ≥ d.

Therefore, our choice of d > 0 satisfies |y − x| ≥ d for all y ∈ A, as required.
b) Given two disjoint sets A,B such that A is closed and B is compact, we will prove that there
exists d > 0 such that |y − x| ≥ d for all x ∈ A and y ∈ B.
First, for all y ∈ B, we know from part a) that there exists a positive number dy such that

|x− y| ≥ dy for all x ∈ A. Then, we can define By to be the open ball of radius
dy
2 around

y. Since each y ∈ By for all y ∈ B, these open balls form an open cover of B. Thus, since B
is compact, there exists a finite subcover By1 , . . . , Byk of B with open balls around y1, . . . , yk,
respectively. Now, we can define the positive real number:

d = min
1≤i≤k

dyi
2
.

Then, we claim that |y − x| ≥ d for all x ∈ A and all y ∈ B for our choice of d. Since y ∈ B, y is
contained in some open ball Byi in our finite subcover of B. Then, by definition of dyi , we have

|x− yi| ≥ dyi . Moreover, since y ∈ Byi , and since Byi is of radius
dyi
2 , we have |y − yi| <

dyi
2 .

As a result, since the triangle inequality gives us |y − x|+|x− yi| ≥|y − yi|, we obtain:

|y − x| ≥|y − yi| −|x− yi| ≥ dyi −
dyi
2

=
dyi
2
≥ d.

Therefore, our choice of d > 0 satisfies |y − x| ≥ d for all x ∈ A and all y ∈ B, as required.

Now, we are ready to solve Question 3. Suppose we are given an open set U and a compact
set C ⊆ U . Then, since U is open, its complement, U c, is closed. Moreover, since C ⊆ U , we
obtain that C and U c are disjoint. Therefore, by Question 2 part b), there exists d > 0 such that
|x− y| ≥ d for all x ∈ C and y ∈ U c. Now, for all x ∈ C, consider the open ball Bx and closed
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ball Dx around x with radius d
2 ; in other words:

Bx = {x′ ∈ Rn :
∣∣x′ − x∣∣ < d

2
}, Dx = {x′ ∈ Rn :

∣∣x′ − x∣∣ ≤ d

2
}.

(Note that Bx ⊆ Dx because
∣∣x′ − x∣∣ < d

2 ⇒
∣∣x′ − x∣∣ ≤ d

2 .) Now, for all x ∈ C, we have x ∈ Bx
because |x− x| = 0 < d

2 . As a result, the family {Bx}x∈C forms an open cover of C. Since C is
compact, we can extract a finite subcover {Bx}x∈C′ , where C ′ is a finite subset of C. Then, let
us define D by D =

⋃
x∈C′ Dx. We will show that D satisfies the desired properties.

First, we will show that D ⊆ U . For all x′ ∈ D, there exists x ∈ C ′ such that x′ ∈ Dx, so∣∣x′ − x∣∣ ≤ d
2 . Then, as discussed above, all points in U c are a distance of at least d away from x

because x ∈ C. Since
∣∣x′ − x∣∣ ≤ d

2 , this implies that x′ /∈ U c for all x′ ∈ D. As a result, D ⊆ U .
Next, we will show that D is compact. For all x ∈ C ′, the closed ball Dx is bounded because
every point in Dx must be a distance of at most d

2 away from x. Then, since D is a union of

finitely many such balls, D is also bounded. Additionally, for all y /∈ Dx, we have |y − x| > d
2 .

Then, we can define the positive real number r = |y − x| − d
2 , and we can consider the open ball

U around y of radius r. For all z ∈ U , we have |z − y| < r = |y − x| − d
2 , so by the triangle

inequality, we obtain:

|z − x| ≥|y − x| −|y − z| > |y − x| −
(
|y − x| − d

2

)
=
d

2
.

As a result, z /∈ Dx for all z ∈ U . In other words, U is an open neighbourhood around y inside
Dc
x. Since such a neighbourhood U exists for all y /∈ Dx, we conclude that Dc

x is open, so each
Dx is closed, so D is also closed as a finite union of closed sets. Thus, since D is both closed and
bounded, it is compact by Spivak’s Corollary 1-7.
Finally, we will show that the interior of D contains C. For all x′ ∈ C, since {Bx}x∈C′ is an open
cover of C, there exists x ∈ C ′ for which x′ ∈ Bx. Moreover, Bx ⊆ Dx ⊆ D, so Bx is an open
neighbourhood of x′ contained in D. As a result, x′ is in the interior of D. Since this is true
for all x ∈ C, we conclude that the interior of D contains C. Overall, we found a compact set
D ⊆ U whose interior contains C, as required.
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4. (Note: This solution was submitted to Crowdmark but not marked.)
We will prove that any linear map T : Rn → Rm is continuous.
First, in Assignment 1 Question 2, we proved that there exists M ∈ R such that

∣∣T (h)∣∣ ≤ M |h|
for all h ∈ Rn. We can assume without loss of generality that M > 0; otherwise, if M ≤ 0, we
could select any M ′ > 0, and M ′ would satisfy

∣∣T (h)∣∣ ≤M |h| ≤M ′|h| for all h ∈ Rn.
Now, let any a ∈ Rn be given. Also, let any ε > 0 be given. Then, let us define δ > 0 by δ = ε

M ;
we can divide by M because M > 0. Next, let x be any point in Rn satisfying |x− a| < δ. Then,
since T is linear, we obtain:∣∣T (x)− T (a)∣∣ = ∣∣T (x− a)∣∣ ≤M |x− a| < Mδ =M · ε

M
= ε.

Therefore, for all ε > 0, we found δ > 0 such that all x ∈ Rn which satisfy |x− a| < δ also satisfy∣∣T (x)− T (a)∣∣ < ε, so T is continuous at a. Since this is true for all a ∈ Rn, we conclude that T
is a continuous function, as required.
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5. We are given A = {(x, y) ∈ R2 : x > 0 and 0 < y < x2}. We are also given the indicator
function f : R2 → R of A, defined by f(x, y) = 1 if (x, y) ∈ A, and f(x, y) = 0 otherwise. We
will show that f is not continuous at (0, 0), yet its restriction to every straight line through (0, 0)
is continuous at (0, 0).
First, to show that f is not continuous at (0, 0), let us pick ε = 1

2 . Then, let any δ > 0 be given.
Clearly, (0, 0) /∈ A because (0, 0) does not satisfy x > 0, so f(0, 0) = 0. Next, consider the
following two cases:
Case 1: δ ≥ 2. Then, let us define z = (1, 12). We obtain z ∈ A because 1 > 0 and because

0 < 1
2 < 1 = 12. As a result, f(z) = 1. We also have

∣∣z − (0, 0)
∣∣ =√12 + (12)

2 < 2 ≤ δ. Thus,

our chosen z ∈ Rn satisfies
∣∣z − (0, 0)

∣∣ < δ, and it also satisfies
∣∣f(z)− f(0, 0)∣∣ = |1− 0| = 1 > ε.

Case 2: 0 < δ < 2. Then, let us define z = ( δ2 ,
δ2

8 ). We obtain z ∈ A because δ
2 > 0 and

because 0 < δ2

8 < δ2

4 = ( δ2)
2. As a result, f(z) = 1. We also have:

∣∣z − (0, 0)
∣∣ =

√(
δ

2

)2

+

(
δ2

8

)2

≤

√(
δ

2

)2

+

(
δ · 2
8

)2

(Since 0 < δ < 2)

=

√
5

16
δ2

< δ.

Thus, our chosen z ∈ Rn satisfies
∣∣z − (0, 0)

∣∣ < δ, and it also satisfies
∣∣f(z)− f(0, 0)∣∣ = 1 > ε.

Overall, we found ε > 0 such that for all δ > 0, there exists z ∈ Rn such that
∣∣z − (0, 0)

∣∣ < δ and∣∣f(z)− f(0, 0)∣∣ > ε, so f is not continuous at (0, 0), as required.
Next, let ` be any straight line through (0, 0). Then, we will show that the restriction of f to `
is continuous. First, if ` is vertical, or if ` has a slope that is not positive, ` will not pass through
the first quadrant, so it will not intersect A because A is contained in the first quadrant. As a
result, the restriction of f to ` is the zero function, which is obviously continuous. (Formally:
Given any ε > 0, we can pick δ = 1 > 0, then all z ∈ ` satisfying

∣∣z − (0, 0)
∣∣ < δ would also

satisfy
∣∣f(z)− f(0, 0)∣∣ = |0− 0| < ε.) From now on, we will focus on the nontrivial case where `

has some positive slope m.
Let any ε > 0 be given. Then, let us define δ = m > 0. Next, let (x,mx) be any point in
` satisfying

∣∣(x,mx)− (0, 0)
∣∣ < δ. If x ≤ 0, then we cannot have x > 0, so (x,mx) /∈ A.

Otherwise, if x > 0, we obtain:

δ >
∣∣(x,mx)− (0, 0)

∣∣ =√(x− 0)2 + (mx− 0)2 ≥ x.

As a result, m = δ > x, so we obtain mx > x2, giving us (x,mx) /∈ A. In either case, we get
(x,mx) /∈ A, which means f(x,mx) = 0. As a result,

∣∣f(x,mx)− f(0, 0)∣∣ = |0− 0| = 0 < ε.
Therefore, given any ε > 0, we found δ > 0 such that all (x, y) ∈ ` satisfying

∣∣(x, y)− (0, 0)
∣∣ < δ

also satisfy
∣∣f(x, y)− f(0, 0)∣∣ < ε, so the restriction of f to any line ` through (0, 0) is continuous,

as required.
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6. (Note: This solution was submitted to Crowdmark but not marked.)
Given a set A ⊆ Rn which is not closed, we will show that there exists a continuous function
f : A→ R which is unbounded.
Since A is not closed, its complement, Ac, is not open. As a result, there exists a ∈ Ac such that
every open set around a contains some point in A. Then, let us define the function f : A→ Rn
by f(x) = 1

|x−a| . Since a ∈ Ac, we know that x 6= a for all x ∈ A, so |x− a| > 0, which means

that f(x) is well-defined.
Now, we will show that f is unbounded. For all M > 0, consider the open ball BM around a of
radius 1

M . Since every open set around a contains some point in A, there exists some x ∈ BM ∩A.
Since x ∈ BM , we know that |x− a| < 1

M , so f(x) = 1
|x−a| > M . As a result, for all M > 0,

there exists some x ∈ A such that f(x) > M , so f is unbounded.
Finally, we will show that f is continuous. Let x0 be any point in A. Then, let any ε > 0 be
given. Now, let us define the positive number:

δ = min

(
|x0 − a|

2
,
ε|x0 − a|2

4

)
.

Then, for all x ∈ A such that |x0 − x| < δ, we obtain:

∣∣f(x)− f(x0)∣∣ = ∣∣∣∣ 1

|x− a|
− 1

|x0 − a|

∣∣∣∣
=

∣∣|x0 − a| −|x− a|∣∣
|x− a||x0 − a|

≤ |x0 − x|
|x− a||x0 − a|

(Applying triangle inequality)

≤ |x0 − x|∣∣|x0 − a| −|x0 − x|∣∣ ·|x0 − a| (Applying triangle inequality)

≤ |x0 − x|
(|x0 − a| − 1

2 |x0 − a|) ·|x0 − a|
(Since |x0 − x| < δ ≤ |x0 − a|

2
)

=
|x0 − x|
1
2 |x0 − a|

2

≤
ε
4 |x0 − a|

2

1
2 |x0 − a|

2 (Since |x0 − x| < δ ≤ ε|x0 − a|2

4
)

=
ε

2
< ε.

Therefore, for all ε > 0, we found δ > 0 such that all x ∈ A which satisfy |x− x0| < δ also satisfy∣∣f(x)− f(x0)∣∣ < ε. Since this is true for all x0 ∈ A, we conclude that f is continuous. Thus, our
choice of f is both unbounded and continuous, as required.

10



7. We will prove that a set C is compact if and only if every open cover U of C that is closed under
unions of pairs has a set T such that C ⊆ T .
First, for the ”⇒” direction, suppose that C is compact, and let U be any open cover of C that
is closed under unions of pairs. Then, since C is compact, there exists a finite subcover of C
contained in U . As a result, we can define k to be the smallest finite number of open sets in
U required to cover C. Now, assume for contradiction that k > 1. Then, there exists a finite
subcover U1 ⊆ U of C with k open sets U1, . . . , Uk ∈ U . Since U is closed under unions of pairs,
we have U1 ∪ U2 ∈ U . We also have:

(U1 ∪ U2) ∪ U3 ∪ · · · ∪ Uk = U1 ∪ U2 ∪ U3 ∪ · · · ∪ Uk,

so (U1∪U2), U3, . . . , Uk cover C because U1, . . . , Uk also cover C. As a result, (U1∪U2), . . . , Uk is
a subcover of C contained in U with k−1 elements, contradicting the minimality of k. Therefore,
by contradiction, k = 1, so there exists a subcover of C contained in U with 1 open set T . In
other words, the set T ∈ U satisfies C ⊆ T , as required for the ”⇒” direction.
Next, for the ”⇐” direction, suppose that every open cover U of C that is closed under unions of
pairs has a set T such that C ⊆ T . Then, let U1 be any general open cover of C. We can define U2
to be the set of all unions of finitely many sets in U1. Now, for all (U1∪· · ·∪Uk), (V1∪· · ·∪Vj) ∈ U2,
where U1, . . . , Uk, V1, . . . , Vj ∈ U1, we find that the union:

(U1 ∪ · · · ∪ Uk) ∪ (V1 ∪ · · · ∪ Vj)

is also a union of finitely many sets in U1, so it is also in U2. In other words, U2 is closed
under unions of pairs. Then, by assumption, there exists a set T ∈ U2 such that C ⊆ T .
Next, since T ∈ U2, we can write T in the form U1 ∪ · · · ∪ Uk, where U1, . . . , Uk ∈ U1. Since
C ⊆ T = U1 ∪ · · · ∪ Uk, it follows that U1, . . . , Uk is a finite subcover of C contained in U1.
Therefore, since every open cover of C has a finite subcover of C, we conclude that C is compact,
as required for the ”⇐” direction. Since we have proven both directions, we are done.
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Notes on intuition

Now, let’s develop some intuition on how to approach these problems and find solutions for them. (Note:
This section was not submitted on Crowdmark.)

1. For the closed ball A1, one could draw a geometric picture of a closed ball. Then, it becomes
intuitive that the boundary of A1 consists of the surface of A1, which contains points with a
magnitude (i.e, norm) of 1. To motivate the formal proof, we are essentially picking some line
passing through the boundary point x – such as a line in the x1-direction. This line would have
to poke outside the closed ball, even if it is tangent to the ball, and we prove this algebraically.
Next, we can also see that all points closer to the origin (i.e., with a smaller magnitude) will be
in the interior of A1, and all points farther away (with a larger magnitude) will be in the exterior.
We formalize these ideas using standard proof techniques involving the triangle inequality. The
intuition for A2 is similar, except A2 is a hollow sphere, so all points closer to the origin will now
be outside A2 and in its exterior.
The solution for A3 is similar to that of Assignment 1 Question 5. Since Q and R−Q are both
dense, we can show that every point in Rn is surrounded both by points with rational coordinates
(points inside A3) and by points with irrational coordinates (points outside A3). It follows that,
surprisingly, every point in Rn is in the boundary of A3!

2. a) Here, we are only told x is inside the complement Ac of A, where Ac is open. This is enough to
construct an open ball around x contained in Ac. In other words, this ball cannot contain points
in A, so its radius naturally gives us a distance between x and A.
b) According to the textbook’s hint, for all y ∈ B, we should find an open set By containing y
such that By ∩ B has some positive distance away from A. Indeed, in part a), we already found
that y has some positive distance dy away from B. Then, we could try defining By to be some
open ball around y. This ball’s radius must be chosen carefully – if we choose dy to be the radius,
then some points inside the open ball may be too close to B because B is also a distance of dy
from y! To amend this, we choose a radius of

dy
2 to leave some leeway of size

dy
2 between By

and y. Once we find these open balls around each y, the purpose of the textbook’s hint becomes
clear: These open balls cover B, so we could take the minimum of the

dy
2 s to find the distance

between A and B. One problem remains: if there are infinitely ys, we cannot take the minimum
of infinitely many numbers in general. Here is where we use the compactness of B. By taking a
finite subcover using Bys, we now only have to take the minimum of finitely many

dy
2 s, which is

possible.
c) In a nutshell, our counterexample for A and B in this solution set consists of infinitely many
single points, all separated from each other, which approach each other as we move farther away
from the origin. First, the reason why we use single points is because we know that any finite
collection of single points is closed. By separating all points in A with a distance of at least 1,
there will be locally finitely many single points in A around any x ∈ Ac, which allows us to easily
find an open rectangle around x contained in Ac. (The same thought process applies for B.)
Next, from part b), we learned that if A or B is compact (which is equivalent to being closed and
bounded), then A and B cannot be used as a counterexample. Instead, we need A and B to be
unbounded in our counterexample. This motivates us to design A and B whose points approach
each other, but do not coincide, as we move farther away from the origin.

3. First, if we want to surround C with D ⊆ U , and we want to surround C enough so that C
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is inside the interior of D, it is helpful to have some distance between C and U c so that we
can surround C. Fortunately, Question 2 gives us this distance. Next, to have D be closed and
bounded (and thus compact), we can try taking a finite union of closed balls around points in
C. (As with Question 2, we use a radius of d

2 instead of d to create some leeway between D
and U c.) These closed balls must form a finite cover of C so that we can take their finite union.
To facilitate this, the proof contains some technical details about using open balls of radius d

2 to
approximate the closed balls, then picking a finite subcover with these balls because C is compact.

4. First, the textbook’s hint tells us to use Problem 1-10, which let us bound |Th| in terms of |h|. In
other words, if h is small (i.e., near zero), then Th is small (i.e., near zero). Since T is linear, we
can easily generalize this result: If some x = a+ h is near a (i.e., h is small), then Tx is near Ta
because Tx = Ta+ Th, where Th is small. This gives us the continuity of T that we wanted.

5. We are given the region A, which is bounded by the positive x-axis and the parabola y = x2. Then,
as the parabola approaches (0, 0), it is geometrically clear that points in A become arbitrarily close
to (0, 0). As a result, the indicator function is discontinuous at (0, 0). Next, let us consider the
direction that such points approach (0, 0). Since y = x2 is parabolic, the direction of approach
becomes increasingly horizontal. In other words, if these points in A were to approach (0, 0) along
some positively-sloped line through (0, 0), this line would rise above A near (0, 0) as A becomes
more horizontal. The only lines left to consider are ”special” cases, such as a horizontal line
through (0, 0). Fortunately, these cases are easy because those lines do not intersect A.

6. As stated in the textbook’s hint, we pick some point x that is outside A and also on the boundary
of A, then we want to define f(y) := 1

|y−x| for all y ∈ A. Since x is on the boundary of A,

there are points y in A arbitrarily close to x, so f(y) = 1
|y−x| becomes unbounded. Additionally,

to prove that f is continuous, our solution is heavily motivated by the MAT157 proof that the
function g : R− {0} → R defined by g(x) = 1

x is continuous.

7. For the ”⇒” direction, the key idea is that ”Closed under pairwise unions” is equivalent to ”Closed
under finite unions” because pairwise unions can be performed multiple times in a row to form
finite unions. In this case, when we are given an open cover U of C that is closed under pairwise
unions, U is also closed under finite unions. Since C is compact, we extract a finite subcover from
U , and since U is closed under finite unions, this finite subcover gives a T ∈ U which covers C.
For the ”⇐” direction, to prove C is compact, we consider a general open cover U1 of C. The
problem is that we cannot do anything with an open cover unless it is closed under pairwise unions,
so we hope to construct some open cover U2 of C which is closed under pairwise unions. If we
construct such a cover U2, we would be able to extract some T ∈ U2 which covers C. Ideally, this
T should give us a finite subcover of C, which motivates us to take U2 to contain all finite unions
of sets in U1. After verifying that this U2 is indeed closed under pairwise unions, we are done.
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