Problem 1. By whatever means you wish, compute $\sum_{D} \frac{1}{|\operatorname{Aut}(D)|}$ where D runs over all connected diagrams with exactly $m=10$ quadrivalent vertices (vertices that connect to 4 edges). For example, for $m=1$ this number is $\frac{1}{2^{3}}=\frac{1}{8}$, for $m=2$ it is $\frac{1}{2 \cdot 4!}+\frac{1}{2^{4}}=\frac{1}{12}$ and for $m=3$ it is $\frac{11}{96}$.

Problem 2. By whatever means you wish, find the generating function for the multiplication map $m_{k}^{i j}: A_{i} \otimes A_{j} \rightarrow A_{k}$ of the associative algebra $A:=\langle\mathbf{a}, \mathbf{x}\rangle /([\mathbf{a}, \mathbf{x}]=\mathbf{x})$, relative to the ordered basis (\mathbf{a}, \mathbf{x}).

Problem 3. By whatever means you wish, yet without using results derived in class for $Q U$, prove that the element $R_{i j}:=\mathbb{e}^{\hbar \mathbf{b}_{i} \mathbf{a}_{j}+\hbar \mathbf{y}_{i} \mathbf{x}_{j}}$ of $\left(\mathcal{U}\left(s l_{2+}^{0}\right)_{i} \otimes \mathcal{U}\left(s l_{2+}^{0}\right)_{j}\right) \llbracket \hbar \rrbracket$, with $s l_{2+}^{0}$ being $s l_{2+}^{\epsilon}$ at $\epsilon=0$, satisfies the Yang-Baxter equation (Reidemeister 3) in $\mathcal{U}\left(s l_{2+}^{0}\right)^{\otimes 3} \llbracket \hbar \rrbracket$.

