Problem 1. By whatever means you wish, compute $\sum_{D} \frac{1}{|\operatorname{Aut}(D)|}$ where D runs over all connected diagrams with exactly m = 10 quadrivalent vertices (vertices that connect to 4 edges). For example, for m = 1 this number is $\frac{1}{2^3} = \frac{1}{8}$, for m = 2 it is $\frac{1}{2 \cdot 4!} + \frac{1}{2^4} = \frac{1}{12}$ and for m = 3 it is $\frac{11}{96}$.

Problem 2. By whatever means you wish, find the generating function for the multiplication map $m_k^{ij}: A_i \otimes A_j \to A_k$ of the associative algebra $A \coloneqq \langle \mathbf{a}, \mathbf{x} \rangle / ([\mathbf{a}, \mathbf{x}] = \mathbf{x})$, relative to the ordered basis (\mathbf{a}, \mathbf{x}) .

Problem 3. By whatever means you wish, yet without using results derived in class for QU, prove that the element $R_{ij} := e^{\hbar \mathbf{b}_i \mathbf{a}_j + \hbar \mathbf{y}_i \mathbf{x}_j}$ of $(\mathcal{U}(sl_{2+}^0)_i \otimes \mathcal{U}(sl_{2+}^0)_j)[\![\hbar]\!]$, with sl_{2+}^0 being sl_{2+}^{ϵ} at $\epsilon = 0$, satisfies the Yang-Baxter equation (Reidemeister 3) in $\mathcal{U}(sl_{2+}^0)^{\otimes 3}[\![\hbar]\!]$.