May 28 - differential operators, div and j on board: Nowt meeting Jar 20, many ay-29-12
66 PM
 videos in between.

If $D \in\langle\operatorname{trees}\rangle, \operatorname{div} D:=l^{-1}(u-l)(D)$
Why "div"? Why "j"? whore

$\rho: \hat{u}(I g)^{\otimes n} \longrightarrow T D O(g \theta \ldots \theta y)$

$$
I g=y^{*} \rtimes g-
$$

$* \varphi \in y^{\rho} \hat{\varphi}$, multiplication by φ.
$k x \in g \xrightarrow{\rho}$ derivation in the direction of $-a_{d} x$:

$$
\begin{aligned}
&(\rho(x) f)(y)=d f_{y}([y, x])= \\
&=\left.\frac{\partial}{\partial \epsilon} f(y+\epsilon[y, x])\right|_{\epsilon=0} \\
&=\left.\frac{\partial}{\partial \epsilon} f\left(e^{-\epsilon x} y e^{\epsilon x}\right)\right|_{\epsilon=0} \\
&=:\left(\delta_{x} f\right)(y)
\end{aligned}
$$

claim This extends to U (Ig).

$$
\begin{aligned}
& \text { Proof } 1 \cdot \rho\left(\varphi_{1} \varphi_{2}\right)=\rho\left(\varphi_{1}\right) \rho\left(\varphi_{2}\right) \\
& \text { 2. }(\rho(\varphi x) f)(y)=\varphi(y) f([x, y]) \\
& (\rho(x \varphi) f)(y)=(\varphi(x)(\varphi f))(y)=\varphi(y) f((x, y)+
\end{aligned}
$$

$$
\begin{gathered}
+f(y) \varphi([x, y]) \\
(\rho(x \varphi-\varphi x) f)(y)=f(y) \varphi([x, y]) \\
(\rho([x, \varphi]) f)(y)=[x, \varphi](y) f(y)=-\varphi([x, y]) f(y)
\end{gathered}
$$

3. \cdot...
ρ maps wheols to functions k trees to v.E. IE D is a tree,
chim 1. $\rho(u D)^{*}=-\rho(l D)$
4. $\rho(\operatorname{div} D)=\operatorname{div}(\rho(u(D))$

An Asile on R3 $\mathcal{F}(\mid \rightarrow-1)=\sum \varphi_{i} \otimes x^{i}$

$$
\begin{aligned}
& (\tau(1-H) f)(x, y)=\sum \varphi_{i}(x)\left(f_{\left(0, x^{i}\right)} f\right)(x, y) \\
& =\left(f_{(0, x)} f\right)(x, y) \\
& \left(\tau\left(R_{12}\right) f\right)(x, y)=(\exp (f(0, x)) f)= \\
& =f\left(x, l^{-x} y l^{x}\right)=: f\left(x, y^{x}\right) \\
& =:\left(f \circ I A_{d}\right)(x, y) \\
& \left(\bar{u}\left(R_{12} \cdot R_{13} \cdot R_{23}\right) f\right)(x, y, z)= \\
& \left(f \circ I A d_{23} \circ I A_{13} \circ I A_{12}\right)(x, y, z) \\
& (x, y, z) \xrightarrow{\text { Idn }}\left(x, y^{x}, z\right) \stackrel{\text { IAd }}{\text { In }}\left(x, y^{x}, z^{x}\right) \xrightarrow{\text { IAd }}{ }_{z_{3}}
\end{aligned}
$$

other side:

$$
\left(x, y^{x},\left(z^{x}\right)^{\left(y^{x}\right)}\right)
$$

$$
(x, y, z) \xrightarrow{23}\left(x, y, z^{y}\right) \xrightarrow{B 3}\left(x, y,\left(z^{y}\right)^{x}\right) \xrightarrow{12}\left(x, y^{x},\left(z^{y}\right)^{x}\right)
$$

This is the quandle property \&

Clair $j\left(e^{0}\right):=\frac{l^{0}-1}{D}(\operatorname{div} D)=\log \left(e^{-l D} e^{u 0}\right)$
proof 1 Use the Euler trick; ness:

$$
\exp \left(\frac{e^{t D}-1}{t D}\right)(\operatorname{div} t D) \stackrel{?}{=} e^{-\alpha t o} e^{u t D}
$$

apply $\widetilde{E_{+}}$at $t=1$:

$$
e^{D}(\operatorname{liv} D) \stackrel{?}{=} e^{-u 0}(-1 D) e^{u D}+u D
$$

"proof 2" Interpret $D \leadsto X=\rho(u D)$, then

$$
\begin{aligned}
& j\left(e^{0}\right)=\log \left(\left(e^{x}\right)^{*} e^{x}\right) \sim \log \left(\operatorname{Jac}\left(e^{x}\right)\right) \\
& \quad \sim \int_{0}^{1} d t e^{+x} \operatorname{div} x \sim \frac{e^{x}-1}{x} \operatorname{div} x=\frac{e^{D}-1}{D^{2}} \operatorname{div} .
\end{aligned}
$$

