Pensieve header: Sep 22: Too many ways to compute Fibonacci.

Too many ways to compute Fibonacci

The Naive Way

```
 \begin{aligned} & f0[0] = f0[1] = 1; \ f0[n_{-}] := f0[n-1] + f0[n-2]; \\ & Table[Echo@Timing[n \to f0[n]], \ \{n, 1, 40\}] \end{aligned}
```

The Naive Way, Corrected

 $f1[0] = f1[1] = 1; f1[n_] := f1[n-1] + f1[n-2];$ Timing[f1[40]];

- "prev", "cur", and "While".
- "prev", "cur", and "Do".

"prev", "cur", and "For".

A "While" loop for $\{f_1, f_2, ...\}$ (using negative indices)

A "While" loop for $\{f_1, f_2, ...\}$ (using "Total" and "Most")

"ReplaceRepeated" on
$$\begin{pmatrix} n \\ f_{n-1} \\ f_n \end{pmatrix}$$
.
"NestWhile" on $\begin{pmatrix} n \\ f_{n-1} \\ f_n \end{pmatrix}$.

"Nest" on $\binom{f_{n-1}}{f_n}$.

A Sum of Binomial Coefficients

Solve for an "explicit" formula, then use it.

"Series" and $\frac{1}{1-x-x^2}$

"SeriesCoefficient" and $\frac{1}{1-x-x^2}$

Using "MatrixPower"

Using $f_{2n} = f_n^2 + f_{n-1}^2$ and $f_{2n+1} = f_n(f_{n+1} + f_{n-1})$

A "categorified" version (using lists)

A "categorified" version (using strings)

Other Items

Continue looking at Charlene's project? A look at Etienne's project?