Rille Along: Hov for cm you go, with n Tuna blocks? Rel Along: $\sec 7, \underline{8}$
Agenin: The inverse function theorem?
Chain rule: $\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{n} \xrightarrow{9} \mathbb{R}^{p} \quad D(g \circ f)(a)=(D g)(E(a)) \cdot(D F)(a)$
claim If $\gamma \in o(h)$ and $|\delta(x)|<c|x|$ for a fixed c and sal x, hen $\gamma o f \in o(x)$ on board.
Pf $\frac{\mid \gamma(\delta(x)| |}{|x|}=\frac{|\gamma(\tilde{(x)})|}{|\Gamma(x)|} \frac{|\delta(x)|}{|x|} \longrightarrow 0$
often: $\mathbb{R}_{x_{1}-x_{1}}^{n} \xrightarrow\left[\left(f_{1}\right]{f} \begin{array}{l}f \\ f_{m}\end{array}\right) \mathbb{R}_{y_{1} \ldots y_{n}}^{m} \xrightarrow{g} \mathbb{K}$

$$
\begin{aligned}
& \frac{\partial}{\partial x_{i}} g\left(f_{1}\left(x_{1} \ldots x_{n}\right), f_{2}\left(x_{1} \ldots x_{n}\right)_{1} \ldots f_{m}\left(x_{1} \ldots \partial_{n}\right)\right) \\
& \quad=\frac{\partial g}{1} \frac{x_{i}}{\partial x_{i}}+\frac{\partial g}{\partial y_{2}} \frac{\partial f_{2}}{\partial x_{i}}+\ldots+\frac{\partial g}{\partial y_{m}} \frac{\partial f_{m}}{\partial x_{1}^{\prime}}
\end{aligned}
$$

Cor 1 If f, g are c^{r}, so is $g \circ f$.
Corollary 3. If $F, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, f diffable at a, 9 diffable at $b=f(a)$, and $g(f(x))=x$ neat a, then

$$
(D g)(b)=[D(f)]^{-1}
$$

The (The Inverse function theorem) If $f: \mathbb{P}^{n} \longrightarrow \mathbb{R}^{n}$ is oriffable near $a \in \mathbb{R}^{n}$ and $D F(a)$ is invertible, then F is invertible near a; precisely, there are open nods \cup of $a \& \forall$ of $b=F(a)$ sit.
$\mathrm{Fl}_{U}: U \longrightarrow V$ is $1-1$ \& onto. Furthermore, if F is C^{r}, than so is $f^{-1}: V \rightarrow V$.
Comment WLOC, $D F(a)=I$. other (wiselkt $E=D F(a)$,

$$
g=E^{-1} \circ f
$$

(so $f=E \cdot g$)

Then $D g(a)=I \& \quad F^{-1}=J^{-1} \circ E^{-1} \ldots .$.
$\frac{\text { Technical }}{(T)}$ Lemma F is "Jelly-rigl" near a : For any x, y new r a,
$\frac{\text { Technical }}{(T L)} \frac{\text { Lemma } F}{} F$ is "Jelly-rigis" near a : For any x, y new a, (TL) $\quad f(y)-f(x) \sim y-x$
preciscly, $\forall \in>0$ ヨnbd U of $\pi \forall x, y \in U$

$$
\|F(y)-f(x)-(y-x)\| \leqslant \in\|y-x\|
$$

Fulse proos

$$
f(y)=f(x+(y-x))=f(x)+D f_{x}(y-x)+y(y-x)=f(x)+(1+B)(y-x)+y(y-x)
$$

where $B \sim \underset{\gamma}{r}$ wher y EO(h)
So

$$
f(y)-F(x)-(y-x)=B(y-x)+\varphi(y-x) \quad\left(\begin{array}{ccc}
B_{y}+y & \text { limar is } \\
\text { on } & x_{c}
\end{array}\right]
$$

corrict iE MVT to the rescuep $F(b)-F(A)=f^{\prime}(c)(b-a)$
$\frac{\text { Asile }}{M V T}$ in \mathbb{R}^{2} : If $F^{: ⿰ \mathbb{R}^{n}}$ is ${ }^{\mathbb{R}}$ diffable ulong the line betwen $a \times b$,
then $\exists c$ on that line s.t. Indul, use (DMVT

$$
f(b)-f / a)=D f(c)(b-a)
$$

$$
\text { on } g(t)=a+t(b-a)
$$

Buch to $T L$: Find $C_{1} \ldots C_{n}$ betweon $x \& y$ s.t.

$$
F_{i}(y)-F_{i}(x)=D F\left(C_{i}\right)_{i} \cdot(y-x)=\left(I+D_{i} \mu_{i}(y-x)=y_{i}-x_{i}+d_{i}(y-x)\right.
$$

where D_{i} Can be male somuleer then $\frac{t}{n}$. Then

$$
\left|F_{i}(y)-F_{i}(x)-\left(y_{i}-x_{i}\right)\right|=\left|d_{i}(y-x)\right| \leqslant n \frac{t}{n}|y-x|
$$

Part I f is bcally $1-1$.

