1617-257 Wed Oct 26, Hour 19: Inverse Functions, 4; implicit functions

Riddle Along: Can you pack 213×1 rectangles and on an 8×8 board? Are there limits on where the missing piece may be?
Read Along: Secs 8,9.
TT: Tue Nov 1 5PM-7PM @ BI 131. Extra OH: Jeff Mon 4-7 Huron 215 10th floor, Dror Tue 11-2 BA 6178,
Agenda: The Inverse Function Theorem.
The (IFT) $F: \mathbb{R}^{n} \partial$ is C^{\prime} new $a \in \mathbb{R}^{n}, \exists D F(a)^{-1}$
$\Rightarrow \exists$ abd $U>a, V \ni b=f(a)$ sit. $\exists(k U)^{-1}: V \rightarrow V$;
$f \in C^{r} \Rightarrow f l u^{-1} \in C^{r}$. W LOG $D f(a)=0, a=b=0$.
Tl F is Jolly-rigid new $a: \forall \epsilon>0 \exists$ nb $J_{\epsilon} \rightarrow a$ sit.

Done: $V=0.4 J_{0.1}, V=F^{-1}(V),\left(F l_{V}\right)^{-1}$ exists \& cont.
TT Details:

- Material: Everything to Friday, roughly proportional to time spent.
- Roughly choose $4 / 5$, some questions multi-part.
- About $1 / 3$ "prove as in class", $1 / 3$ "solve as in HW", $1 / 3$ "solve fresh".
- How I used to prepare.

Part IV F^{-1} is diffable at 0 ,
Part $\mathbb{V} F^{-1}$ is differble near O.
Part VI F^{-1} is C^{r}.
The implicit function the

write $y=g(x)$
sit. $f(x, g(x))=0$.

$$
\Rightarrow y= \pm \sqrt{1-x^{2}}
$$

sometimes two sols
sometimes none

Tho $\operatorname{aiven} \wedge C^{r} f: \mathbb{R}_{x_{1} \ldots x_{n}}^{n} \times R_{y_{1} \ldots y_{k}}^{k} \longrightarrow \mathbb{R}^{k}$ and $(n, b) \in \mathbb{R}^{n} \times k^{k}$ st. $F(a, b)=0$
k
there exists a unique $C^{r} g:\left\{\begin{array}{ccc}n & b & U \\ \text { of } a\end{array}\right] \rightarrow\left\{\begin{array}{ll}n b f & b\end{array}\right\}$ Further move, $\mathrm{Dg}=$ pf $f(z, y)=0 \Leftarrow\left\{\begin{array}{r}x=z \\ f(x, y)=0\end{array}\right.$ so with $H(x, y):=\binom{x}{y}$

This is $H\binom{x}{y}=\binom{z}{0}$ where $H\left(\begin{array}{l}\hat{b}\end{array}\right)=\binom{n}{0}$. Assuming $D H\binom{a}{b}$ is non-singlar, H^{-1} exists near $\binom{a}{0}$. So for z nair $n, \exists\binom{x}{y}$ st. $H\binom{x}{y}=\binom{z}{0} \cdots u$ v. , Alan it nulal in"..ctillit so sot $g(z):=\pi_{2} H^{-1}\binom{z}{0}$

* When is $D H(\hat{\imath})$ invertible? * What is Dg?

