Dror Bar-Natan: Academic Pensieve: Classes: 1617-257a-AnalysisII:
1617-257 Wed Dec 7, Hour 36: Last class on CofV

Added May 18, 2018: Lax has a very short proof of the change-of-variables formula (see eprints). See
also http://drorbn.net/bbs/show?shot=VanDerVeen-180826-141644.jpg.
Save your HW7!!! HW10 due.
Read along: Your notes.
Riddle along: Can you fold a rectangular piece of paper (perhaps many times), so that the result will have a longer perimeter than the original?
Happy holidays and see you next year back at RS 211!
Thm given $(A) \rightarrow B \rightarrow \neq \int_{B} F=\int_{A}(f \circ g) \cdot|\operatorname{det} \hat{H}|$
Lome. True for $g_{1}, g_{2} \Rightarrow$ true for $g=g_{1} \circ g_{2}$
Lemma True for $n f f$ fine liner maps: $g / x)=A x+b$, where $b \in \mathbb{R}^{n} \& A \in M_{n \times n}$ is invertible.
Done for (1) $g(x)=x+b$ (Q) Lord. Swaps (3) could. rescales on board p shears ushy Fubini. WLok, $E_{L}=\left(\begin{array}{ccc}1 c & 0 \\ 1 & 0 \\ 0 & 1 & 1\end{array}\right)$. Nell to show:

$$
L=\int_{y \in B} f\left(y_{1} \ldots y_{n}\right)=\int_{x \in A} f\left(x_{1}+\left(x_{2} f_{0}^{\prime} E_{c} x_{2}, \ldots\right)=R\right.
$$

NTS I: f integrable \Leftrightarrow foE integrable II. $L=R$.
start w/ II: write $x=\left(x_{1}, x^{\prime}\right)$. By Fubiri,

$$
R^{F_{n} b} \int_{x^{\prime} \in R^{-1}}\left(\int_{x_{1} G R} F\left(x_{1}+c x_{2}, x_{2}, \ldots\right)\right) \stackrel{(1)}{=} \int_{x^{\prime}} \int_{x} F\left(x_{1} \ldots x_{n}\right) \stackrel{F_{4} b}{=} L
$$

Now I:

$$
D\left(F \circ E_{C}\right)=E_{c}^{-1}(D(F))=E_{-c}(D(F))
$$

Enough, if D is meas o in $\mathbb{R n}$, then so is Ec (D)
bitter, if D is meas -o in \mathbb{R}^{n}, ten so is $L(D)$, where $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is lin. enough, gNon $L, \exists K \in \mathbb{R}$, sit. for any rectangle R,

$$
\operatorname{vol}(L(R)) \leqslant k \cdot \operatorname{Vol}(R)
$$

Corollary. Lit $p\left(V_{1} \ldots V_{n}\right)$ be the parallelepiped in \mathbb{R}^{n} spanned by $V_{1} \ldots v_{n}$: done

$$
p\left(v_{1} \ldots v_{n}\right)=\left\{\sum \sum_{i}, v_{i}: 0, \pi a ; \leq 1\right\}
$$

Geometric inters.
$\operatorname{TLin} V_{o l}\left(P\left(v_{1} \ldots v_{n}\right)\right)=\left|\operatorname{det}\left(v_{1}|\ldots| v_{n}\right)\right|$ of Sets v_{0}^{0}

Exercise. Compute the volume of $B^{3}=\left\{x \in \mathbb{R}^{3}:|x| \leqslant 1\right\}$.
Sol'n use $g(r, \theta, \phi)=(r \cos \theta \cos \phi, r \sin \theta \cos \phi, r \sin \phi)$
$J=\left|\begin{array}{ccc}\cos \theta \cos \phi & -r \sin \theta \cos \phi & -r \cos \theta \sin \phi \\ \sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\ \sin \phi & 0 & r \cos \phi\end{array}\right|=\sin ^{2} \phi \cos \phi \cdot r^{2}+r \cos ^{3} \phi \cdot r$
So $V\left(B^{3}\right)=\int_{0}^{1} d r \int_{0}^{2 \pi} d \theta \int_{-\pi / 2}^{\pi / 2} d \phi r^{3} \cos \phi=\int_{0}^{1} r^{2} d r \cdot 4 \pi=\frac{4}{3} \pi$

