Read Along: Sec 10.
Riddle Along: k kids share a loot of n indivisible candies. The first proposes a split; if not accepted by a strict majority, she leaves and the second proposes, etc. How is the loot split?
TT: Tue Nov 1 5PM-7PM @ BI 131. Extra OH: Jeff Mon 4-7 Huron 215 10th floor, Dror Tue 11-2 BA 6178.
Agenda:

$$
\int_{M} d w=\int_{M} w
$$

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R} \\
& \int_{n}^{b} f(x) d x=\int_{[a, b]} f
\end{aligned}
$$

$$
\begin{gathered}
p=\left(t_{0}, \ldots . t_{k}\right) \\
\text { or }=\left\{\left[t_{0}, t_{1}\right], \ldots\left[t_{k-1}, t_{k}\right]\right\} \\
J \in p \Leftrightarrow \text { J is one } \\
l(J)=l[c, 1])=d-c
\end{gathered}
$$

$$
m_{J}(F)=\operatorname{in}(-\{F / x): x+J\}
$$

$$
M_{J}(f)=\sup \{f(x): x+J
$$

$$
L(F, p)=\sum_{J \in p} m_{J}(f) l(J)
$$

$$
U(F, p)=\cdots
$$

$$
\frac{\int f}{[\bar{\pi} b]}=\sup (L(f, p): p \underset{o f}{ } \quad \text { partition }[a, b]
$$

$$
\int_{[a, b]}
$$

DG A is integrable on $[a, b]$ if $\int_{[a, b]} f=\int_{[a, b]} f \&^{\text {tho }}$ the common? value is the "integral of f on $[k, b], 1$

Value is the "integra ll of F on $(a, b], \int_{[a, b]} f$

Def $P^{\prime}=\left(a-t_{0}^{\prime}<t_{1}^{\prime}<\ldots<t_{k}^{\prime}=b\right)$ is a refinement of $P=\left(a=t_{0}<t_{1}<\ldots<t_{k}=b\right)$
means $\forall i t_{i} \in\left\{t_{j}^{\prime}\right\}$. $\underline{p}^{\prime}=\left(p_{1}^{\prime} \ldots p_{n}^{\prime}\right)$ is a refinement of $\underline{p}=\left(p_{1}, \ldots . p_{n}\right)$
means $\forall j p_{j}^{\prime}$ is a refinement of p_{j}^{\prime}.
Lemma If p^{\prime} is a refinement of p, then

$$
L(F, \underline{p}) \geqslant L(F, \underline{p}) \quad U(F, \underline{p}) \leqslant U(f, \underline{p})
$$

PF Enough to consider the case whore \underline{p}^{\prime} is obtained from \underline{P} by adding s to to $P_{j_{0}}$ between $t_{i-1} \& t_{i}$. The only difference between
$L\left(f, p^{\prime}\right)$ \& $L(f, p)$ is that rectangles of the form

$$
R^{\prime}=\prod_{j=1}^{j_{0}-1} J_{j} \times\left[t_{i-1}, t_{i}\right] \times \prod_{j=j_{0}+1}^{n} J_{j} \quad J_{j} \in P_{j}
$$

appearing in $L(F, \underline{P})=\sum_{R} m_{R}(F) V(K)$,
Get cut as $R^{\prime}=R_{1} \cup R_{2}$, where

$$
R_{1}=\prod_{j=1}^{j-1} J_{j} \times\left[t_{i-1}, s\right] \times \prod_{j=j_{0}+1}^{n} J_{j} \text { and } R_{2}=\prod_{j=1}^{j_{j}-1} J_{j} \times\left[s, t_{i}\right] \times \prod_{j=j_{0}+1}^{n} J_{j}
$$

But $V\left(R^{\prime}\right)=V\left(R_{1}\right)+V\left(R_{2}\right) \& m_{R_{1}}(f) \leqslant m_{R^{\prime}}(f) \& m_{k_{2}}(f) \leqslant m_{R_{1}}(f)$
So
A simile argument works for $U(f, \Omega) \geqslant V\left(f, \rho^{\prime}\right)$.
Lemma for any two $\mathfrak{p} k \underline{p}^{\prime} \quad L(f, e) \leqslant U\left(f, p^{\prime}\right)$
Proof: Refine both.
corollary:

$$
\int_{Q} f \quad \int_{Q} F \text { make sense } \& \int_{Q} f \div \int_{Q} F \text {. }
$$

Example $\quad \int_{Q} c=c \operatorname{Vdl}(Q)$
Example If $\lambda(x)=\left\{\begin{array}{ll}1 & x \in Q \\ 0 & x \notin Q\end{array}\right.$ then $\int_{0,1} \lambda$ does not exist.

