1617-257 Mon Oct 24, Hour 18: Inverse Functions, 3

Riddle Along: Can you pack $1251 \times 2 \times 4$ block in one $10 \times 10 \times 10$ cube?
Read Along: Sec 8.
TT Discussion: Wednesday.
Agenda: The Inverse Function Theorem.
Thm (IFT) $f: \mathbb{R}^{n} \supseteq$ is C^{\prime} near $a \in \mathbb{R}^{n}, \exists D F(a)^{-1}$
$\Rightarrow \exists$ adds $U \neq a, V \ni b=f(a)$ s.t. $\exists(f) U)^{-1}: V \rightarrow V$;
$f \in C^{r} \Rightarrow \mathrm{Fl}^{-1} \in \mathrm{C}^{-}$. $W \operatorname{LOG} D F(a)=0, a=b=0$.
TL F is Jullg-rigid new $a: ~ \forall \epsilon>0 \quad \exists$ nd J J \exists a sit.

$$
\forall x, y \in J_{\epsilon} \frac{\| f(y)-f(x)}{u}-\underbrace{(y-x)}_{V}\|\leqslant \epsilon\| y-x \|
$$

Part I f is $1-1$ on $J_{0.1}$. ($|v|-|u| \leqslant|u-v| \leqslant f|v|$ so $\left.(1-\epsilon)|v| \leqslant|u|\right)$ part II $\left.f\right|_{J_{0.1}}$ is onto $0.4 J_{0.1}$. [Let $\left.U=J_{0.1} \cap F^{-1}\left(0, y J_{0.1}\right) \& V=0 . y J_{0.1}\right]$ should hue hid part II, 5: f^{-1} is Jelly -rigid.
Also, prot III easier with $\|v\|-\|u\| \leqslant\|u-v\| \leqslant \in\|v\| \Rightarrow\|u\| \geqslant(1-t)\|v\|$

$$
\begin{aligned}
& \text { Which is directly } \\
& \text { cont of fl }
\end{aligned}
$$

Part II f^{-1} is cont. on V. (Aside: $|u-v| \leqslant \epsilon|u|=\epsilon|v+u-v| \leqslant \epsilon|v|+\epsilon|u-v|$

$$
\left.(1-\epsilon)|u-v| \leqslant \epsilon|v| \text { so }|u-v| \leqslant \frac{\epsilon}{1-\epsilon}|v|\right)
$$

Part IV F^{-1} is diffable at 0 ,
Part $\mathbb{V} F^{-1}$ is differble near 0 .
Part VI $F^{\prime \prime}$ is C^{r}.

