1617-257 Mon Oct 17, Hour 15: the Chain Rule

Riddle Along (Kodiak Jackson): An ant walks at $1 \mathrm{~cm} / \mathrm{s}$ on a 1 m super-rubber band that stretches at $1 \mathrm{~m} / \mathrm{s}$. Will it get to the other end? Why not? When?
Rend Along Sec 7, 8
Reminder: $f(a+h)=f(a)+D f(\omega) \cdot h+\varphi(h), \varphi \in \circ(h)$.
The (The chain rule): If $a \in R^{n} \xrightarrow{f} \mathbb{R}^{n} \xrightarrow{9} \mathbb{P}$, f diffable at x, g diffableat f al,
$\operatorname{HLLn} D(g \circ f)(a)=D g(f(-)) D f(a)$
$\xrightarrow{\text { Example }} \mathbb{R}_{t} \xrightarrow{(t, t)} \mathbb{R}_{x, y}^{2} \xrightarrow{x^{y}} \mathbb{R}$
Pf of hm $F(a+h)=f(a)+F \cdot h+\phi(h) \quad \phi \in o(h)$

$$
\begin{aligned}
& b=f(h) \quad g(b+k)=g(b)+G k+\gamma(k) \quad \gamma \in o(k) \\
& (g \circ f)(a+h)=g(f(a+h))=g(\underbrace{f(\gamma)}_{b}+\underbrace{F h+\phi(h)}_{k})=g(b)+G k+\gamma(k) \\
& =g(f(a))+G F h+\underbrace{G \cdot \phi(h)+\gamma(F h+\phi(h))}_{\lambda(h)}=g(f(a))+G F h+\lambda(h)
\end{aligned}
$$

dim $\lambda(h) \in o(h)\}$ gnp herl
Corollary 1. A composition of Cr functions is Cr. [Note domains]
Corollary. [ave in $\mathbb{R n}$, slip] dene
corollary. If $F, g: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$, f diffable at a, 9 liftable at $b=f(a)$, and $g(f(x))=x$ neat a, then

$$
(D g)(b)=[D(f \sim)]^{-1}
$$

