Dror Bar-Natan: Academic Pensieve: Classes: 1617-257a-AnalysisII:
1617-257 Mon Dec 5, Hour 35: C of V, the linear case

Added May 18, 2018: Lax has a very short proof of the change-of-variables formula (see eprints). See
also http://drorbn.net/bbs/show?shot=VanDerVeen-180826-141644.jpg.
Wednesday class as usual! (yet no tutorial)
Read Along: your notes. Agenda: as above.
Riddle Along: Infinitely many b/w hat-wearing prisoners watch each other around a round island. At the gong, they all have to guess the colours on their heads, and if more than finitely many get it wrong, the gods of the sea will swallow them all. Could they have devised a strategy for survival in advance?

Theorem (change of Variables, Sec 17)
LAt $g: A \rightarrow B$ be a diffiomorphism of ope sets in \mathbb{k} ? Than f

Diffeomorphisns: $1-1$ \& onto, Cl is inturable on Biff (Fog.|det Dg| win c^{\prime} inverse.
is integrable on A, and in that case, $\left.\int_{B} f=\int_{A}(F \circ g) / d d t D_{g}\right)=\int_{A}(F \circ g) J_{g}$ on board
"The Jacobian of 9^{-}
Geometry: True for affine linear $g(x)=b+L x$. Tody p_{0}
Andysis: Therefore tue for any g. Maybe later,

* Compositions.
claim

If the is true for g_{1} \& for g_{2}, if is also true for $g_{2} \circ g_{1}$.
Proofs

$$
\begin{aligned}
& \int_{z \in C} F=\int_{y \in b_{3}}\left(F \cdot g_{2}\right)\left|d d d g_{2}(y)\right|=\int_{x \in A} F\left(g_{2}\left(g_{1}(x)\right)|\cdot| d t+d g_{2}\left(g_{1}(x)\right)|\cdot| d\left(t d g_{1}(x) \mid\right.\right. \\
& =\int_{x \in A} F 0\left(g_{2} \circ g_{1}\right)\left|d c t d\left(g_{2} \cdot g_{1}\right)(x)\right|
\end{aligned}
$$

* Translations. $g(x)=b+x$

To prove cot V the if $g=L$ is linear and invertible, it is enough to prove it in the cases of the 3 elementary teas:

* coordinete swaps.
$\left.i \left\lvert\, \begin{array}{cc}1 & j \\ 0 & 1 \\ 1 & 0\end{array}\right.\right)$ nothing
$\left.\begin{array}{l|ccc}i & 1 & & \\ j & 1 & 1 \\ 1 & 1 & 0 \\ & & & 1\end{array}\right)$ to show?
* Coordinate scalings
c $\neq 0$

$$
i\left(\begin{array}{lll}
1 & i & \\
1 & 1 & 0 \\
0 & C & \\
0 & & 1
\end{array}\right) \begin{gathered}
\text { almost } \\
\text { nothing } \\
\text { to shew }
\end{gathered}
$$

p shears ushg Fubini. WLOK, $E_{L}=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 \\ 0 & 1 & 1\end{array}\right)$.
Neel to show:

$$
L=\int_{y \in B} f\left(y_{1} \ldots y_{n}\right)=\int_{x \in A} f\left(x_{1}+c \begin{array}{c}
f_{\prime \prime}^{\prime \prime} E_{c} \\
x_{2}, x_{2}
\end{array}, \ldots\right)=R
$$

NTS I: f intugrable \Leftrightarrow foE E_{c} intograble II. $L=R$.
Stort w/ II: write $x=\left(x_{1}, x^{\prime}\right)$. By Fubini,

$$
R=\int_{x^{\prime} \in R_{n-1}^{N-1}}^{=}\left(\int_{x_{1} G R} f\left(x_{1}+c x_{2}, x_{2}, \ldots\right)\right) \stackrel{(1)}{=} \int_{x^{\prime}} \int_{x} F\left(x_{1} \ldots x_{n}\right) E_{n b} L .
$$

Now I:

$$
D\left(F \circ E_{C}\right)=E_{c}^{-1}(D(F))=E_{-c}(D(F))
$$

Eniogh, if D is meas-o in \mathbb{R}^{n}, then so is $E_{C}(D)$
bittor, if D is meas -0 in \mathbb{R}^{n}, then so is $L(D)$, where $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is lin^{n}. enough, gion $L, \exists K \in \mathbb{R}$, s.t. for ang roctangle R,

$$
\operatorname{vol}(L(R)) \leqslant k \cdot \operatorname{vol}(R)
$$

