1617-257 Fri Oct 21, Hour 17: Inverse Functions, 2

Riddle Along: Can you place 6 slightly worn Jenga blocks so that any two of them will touch each other?
Read Along: Sec 8.
Agenda: The Inverse Function Theorem.
HW3 returned, HW4 due, HW5 on web by midnight.
Thu (The Inverse function theorem) If $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is diffable $\left(\overrightarrow{C l}\right.$ near $a \in \mathbb{R}^{n}$ and $D F(a)$ is invertible, then F is invertible near a; precisely, there are open nods U of a $k V$ of $b=f(a)$ sit.
Flu: $U \rightarrow V$ is $1-1$ \& onto. Furthermore, if F is C^{r}, then so is $f^{-1}: V \rightarrow V$.
Comment W LOG, $D F(a)=$ I. $k a=b=0$.
$\frac{\text { Technical }}{(T L)} \underline{\text { Lemma } F}$ is "Jelly-rigil" near ai for any x, y new a, (TL) $\quad F(y)-F(x) \sim y-x$
precisely, $\forall \epsilon>0 \exists n b d \quad J=J_{\epsilon}=U(0, \delta)$ of o sit.

$$
\forall x, y \in J \quad\|f(y)-f(x)-(y-x)\| \leqslant \in\|y-x\|
$$

False proof

$$
\begin{array}{r}
f(y)=f(x+(y-x))=f(x)+D f_{x}(y-x)+y(y-x)=F(x)+(I+B)(y-x)+y(y-x) \\
\text { where B~E } \quad \text { where } y \in \text { oh) }
\end{array}
$$

So

$$
f(y)-f(x)-(y-x)=B(y-x)+\varphi(y-x) \quad\binom{\text { But y linoonds }}{\text { on } x e}
$$

Correct MF MVT to the rescueD $F(b)-F(a)=f(c)(b-a)$
Aside
$\frac{\text { Aside }}{M V T}$ in \mathbb{R}^{n}. If $f^{\| \mathbb{R}^{n}} \overrightarrow{i s}^{\mathbb{R}}$ diffable along the line between $n k b$,
then $\exists c$ on that line sit. Indus) use IDMVT

$$
f(b)-f / a)=D f(c)(b-a)
$$

$$
\text { on } g(t)=a+t(b-a)
$$

Bach to $T L:$ Find $C_{1} \ldots C_{n}$ between $x \& y$ sit.

$$
F_{i}(y)-F_{i}(x)=D F\left(C_{i}\right)_{i} \cdot(y-x)=\left(I+D_{i}\right)_{i}(y-x)=y_{i}-x_{i}+d_{i}(y-x)
$$

where D_{i} Can be male smaller then $\frac{t}{n}$. Then

$$
\left.\left|F_{i}\right| y\right) \left.-F_{i}(x)-\left(y_{i}-x_{i}\right)\left|=\left|d_{i}(y-x)\right| \leqslant n \frac{t}{n}\right| y-x \right\rvert\,
$$

$$
\begin{aligned}
& |1-i| y)-1-i(x)-\left(y_{i}-x,||=|\operatorname{di}(y-x)| \text { nㅡn }| y-x|\right. \text { done } \\
& \text { If is } 1-1 \text { on } J_{0.1} .
\end{aligned}
$$

Part I f is $1-1$ on $J_{0.1}$.
part II $f J_{J_{0.1}}$ is onto $0.4 J_{0.1}$. [L . $\left.U=J_{0.1} \cap f^{-1}\left(0, Y J_{0.1}\right) \& V=0 . y J_{0.1}\right]$
Part III f^{-1} is cont. on V. (Aside: $|u-v| \leqslant \epsilon|u|=\epsilon|v+u-v| \leqslant \in|V|+\epsilon|u-v|$ $(1-\epsilon)|u-v| \leqslant \epsilon|v|$ so $\left.|u-v| \leqslant \frac{\epsilon}{1-\epsilon}|v|\right)$
Part IV F^{-1} is diffable at 0 , Part $\mathbb{Z} f^{-1}$ is diffoll/ near 0 .
Part II F^{-1} is C^{\prime}.

