Problem 1. Let A be a subset of a metric space (X, d). Show that the distance function to A, defined by $d(x, A):=\inf _{y \in A} d(x, y)$, is a continuous function of x and that $d(x, A)=0$ iff $x \in \bar{A}$.

Marking key.

Continuity: 13/25.
Suppose $d(x, z)<\epsilon$. As $d(x, A)=\inf _{y \in A} d(x, y)$, there is some $y \in A$ such that $d(x, y)<d(x, A)+$ ϵ, and then $d(z, y) \leq d(z, x)+d(x, y)<\epsilon+d(x, A)+\epsilon=d(x, A)+2 \epsilon$, and so $d(z, A)<d(x, A)+2 \epsilon$. By symmetry also $d(x, A)<d(z, A)+2 \epsilon$, and so $|d(x, A)-d(z, A)|<2 \epsilon$. Hence when $z \rightarrow x$ we have that $d(z, A) \rightarrow d(x, A)$, so $d(-, A)$ is continuous.

Even better, given $x, z, d(x, A)=\inf _{y \in A} d(x, y) \leq \inf _{y \in A} d(x, z)+d z, y=d(x, z)+\inf _{y \in A} d(z, y)=$ $d(x, z)+d(z, A)$, and by symmetry $d(z, A) \leq d(x, z)+d(x, A)$. So $\mid d(x, A)-d(z, A) \leq d(x, z)$ and $d(-, A)$ is continuous.
"Iff": 12/25.
Deductions:
(-2) used v.s. notation in a metric space.
(-4) unexplained deduction of the inf inequality from the inequality for a specific point.
(-4) assumed the existence of a minimizer.

