Class photo on web! HW3 due by midnight!
Office Hours: Wed 3-4 this week & next. HW2 due date?
Read Along: Sections 1.1-1.4 of textbook.
Riddle Along: \(V = \mathbb{R}^n \)

Today: Vector spaces, subspaces

Reminder: A vs. over a field \(F \) is a set \(V \),
with a special element \(0 \), a binary +: \(V \times V \to V \)
and a binary \(\cdot \): \(F \times V \to V \), s.t.

VS1. \(x + y = y + x \) VS2. Assoc.
VS3. 0 VS4. -
VS5. 1 \(x = x \) VS6. \(a(bx) = (ab)x \)
VS7. \(a(x+y) = a(x) + a(y) \) VS8. \((a+b)x = ax + bx \)

Examples: 1. \(F^n \)
2. \(M_{mn}(F) \)
3. \(F \setminus \{ 0, F \} \) is a set \(\); bytes / bits
4. Polynomials
5. \(\mathbb{C}/\mathbb{R} \) \(\mathbb{R}/\mathbb{Q} \) "Galois theory"

Thm 1. Cancellation law: additive, 2x multiplicative.

2. 0v is unique
3. negatives are unique.
5. \(0 \cdot x = 0 \)
7. \(-a)x = -(a \cdot x) = a(-x) \)
8. \(CV = 0 \iff C = 0 \) v \(= 0 \)

Def: \(W \subseteq V \) is a "subspace" if it is a vector space
with the operations it inherits from \(V \) done line
They \(W \subset V \) is a subspace iff it is non-empty and closed under addition and under multiplication by a scalar.

Examples:
1. \(\forall A \in M_{n \times n}(\mathbb{F}) \): \(A^T = A \)
2. \(\forall A \in M_{n \times n}(\mathbb{F}) \): \(\text{tr} \ A = 0 \)
3. If \(W_1 \) \& \(W_2 \) are subspaces of \(V \), then \(W_1 \cap W_2 \) (What about unions?)

Goal: Every \(V \)-s. has a "basis". So while we don't have to use coordinates, we can.

Def: \(U \) is a l.c. of \(u_1, \ldots, u_n \) if \(\exists \) \(\left\{ a_i \right\} \) st. \(\sum a_i u_i = u \)

Examples:
1. Vitamins as in the handout.
2. In \(\mathbb{R}_3 \) (IR), \(2x^3 - 2x^2 + 2x - 6 \) is a l.c. of \(x^3 - 2x^2 - 5x - 3 \) and \(3x^3 - 5x^2 - 4x - 9 \)
 but \(3x^3 - 2x^2 + 7x + 8 \) isn't.

Thm: If \(\{ u \} \subset V \) then \(W = \text{span}(u) = \{ \text{all l.c. of the } u \} \) is a subspace of \(V \).