Class photo today?

Office Hours: Wed 3-4 this week & next.

Read Along: Sections 1.1-1.4 of textbook.

Riddle Along: \[V_L = 4V_S \]

Today: Vector spaces, subspaces

Reminder: A V.S. over a field \(F \) is a set \(V \), with a special element over \(V \), a binary \(+: V \times V \rightarrow V \) and a binary \(\cdot: F \times V \rightarrow V \), s.t.:

VSI: \(x + y = y + x \)

VS2: Associative

VS3: \(0 \)

VS4: \(-\)

VS5: \(1 \cdot x = x \)

VS6: \(a(bx) = (ab)x \)

VS7: \(a(x + y) \)

VS8: \((a + b)x \)

Examples:

1. \(F^n \)

2. \(\text{Matrix}(F) \)

3. \(F \{S, F) \) s a set j bytes/bits

4. Polynomials

5. \(\mathbb{C}/\mathbb{R} \)

```
```

```
```

```
```

```
```

```
```

Theorem:

1. Cancellation law: additive, 2x multiplicative.

2. \(0 \) is unique

3. Negatives are unique.

4. \(0 \cdot x = 0 \)

5. \(a \cdot 0 = 0 \)

6. \((a x) = a(\cdot x) = a(-x) \)
b. \(CV = 0 \iff C = 0 \lor V = 0 \)

Def: \(W \subseteq V \) is a "subspace" if it is a vector space with the operations it inherits from \(V \).

Thus \(W \subseteq V \) is a subspace iff it is non-empty and "closed under addition and under multiplication by a scalar."

Examples:
1. \(A \in \text{Mat}_{n \times n}(F): A^t = A \)
2. \(A \in \text{Mat}_{n \times n}(F): \text{tr} A = 0 \)
3. If \(W_1 \) \& \(W_2 \) are subspaces of \(V \), the so is \(W_1 \cap W_2 \) (What about unions?)

Goal: Every \(V \subseteq F \) has a "basis". So while we don't have to use coordinates, we can.

Def: \(\{ u_1, ..., u_n \} \) is a l.c. of \(V \) if \(\exists \alpha_i \in F \) s.t. \(u = \sum\alpha_i u_i \)

Examples:
1. Vitamins as in the handout
2. In \(\mathbb{P}_3(K) \), \(2x^3 - 2x^2 + 12x - 6 \) is a l.c. of \(x^3 - 2x^2 - 5x - 3 \) and \(3x^3 - 5x^2 - 4x - 9 \)
 but not \(3x^3 - 2x^2 + 7x + 8 \) is.

Then if \(\{ w_1, ..., w_n \} \) \(\subseteq V \) then \(W = \text{span}(w_i) := \{ \alpha_i w_i \mid \alpha_i \in F \} \) is a subspace of \(V \).