Most of the goal today is to remove most of the "wishful thinking" hypothesis.

\[\frac{\text{trident}}{3-\text{prism}} \rightarrow \mathcal{D}_n \rightarrow \mathcal{D}_n' \rightarrow \mathcal{D}_n'' \text{ via } \text{om-quadrivalent} \]

\[\mathcal{D}_n' \rightarrow \mathcal{D}_n'' \]

\[Z_0 = \bigoplus \mathbb{Z} \text{ knot } \rightarrow \bigoplus \left[\mathbb{Z}_n \hat{\mathcal{H}} \right] \text{ on board} \]

\[\text{prop. IF invariant, } Z_0 \text{ is a UFTI.} \]

The Hidden Faces: [new only consider connected clusters]

1. \(G \) has a vertex \(v \) connected to the outside via only one internal edge:

2. \(G \) has a vertex \(v \) connected to the outside via exactly two internal edges:

\[\implies \text{The only hidden faces that remain are the...} \]
The only hidden faces that remain are the "anomalous faces"

Probably next week:

\[\mathbf{\Phi} := \begin{cases} \text{trivalent, connected} \quad \text{after removal of slab,} \\ \text{all else the same} \end{cases} \Rightarrow 0 \]

\[\mathcal{C} \xrightarrow{\text{ano}} \times \Phi \xrightarrow{(S^2)E_i} \]

The skeleton points in same 5x direction \(l \). Then take \[\frac{\text{TT}}{S^2} \]

\[\mathcal{C} / \text{translations} \times \text{rotations about } l \]
\[\text{dim } 3|V| + |V|_1 = 2|E|_1 \]
\[\text{dim } 3|V|_1 + |M| - 2 \]

The \(\hat{W} E_i \) is a 2-form on \(S^2 \) ...