Bhattacharyya theorem.

\[Z_M(Y) = \sum_{D \in \text{Aut}(D)} \int \Phi_{\mathbb{D}} W \in \mathcal{D} \cdot \frac{1}{|\text{Aut}(D)|} \cdot C_{\mathbb{D}(1R^2, 1)}(s_1)(1R^2, 1) \cdot \text{board} \]

Let \(M \) be a \(d \)-manifold and \(A \) a point set.

\[C^0_A(M) = \left\{ \text{injections } p: A \rightarrow M \right\}, \quad \dim C^0_A(M) = |A| \cdot d \]

\[C_A(M) := \prod_{\{A_1, ..., A_k\}} \left\{ (p_\alpha \in M, c_\alpha \in C_A(T_{p_\alpha}M))_{\alpha=1}^{|A|} : p_\alpha \neq p_\beta \text{ for } \alpha \neq \beta \right\} \]

where if \(V \) is a vector space and \(A \) is a singleton, \(C_A(V) := \{ \text{a point} \} \) and if \(|A| \geq 2 \),

\[C_A(V) = \prod_{\{A_1, ..., A_k\}} \left\{ (v_\alpha \in V, c_\alpha \in C_A(T_{p_\alpha}V))_{\alpha=1}^{|A|} : v_\alpha \neq v_\beta \text{ for } \alpha \neq \beta / \text{translations and dilations}, \text{ acting on the V.S.} \right\} \]

"big cell" is at \(\dim = d \cdot |A| - d - 1 \)

\(\Rightarrow \) every "grouping" loses one dimension.

Def: A \(d \)-manifold \(M \) with corners (modulo \(1R^d_{+\infty} \))

Thm: \(C_A(M) \) is a \(d|A| \)-manifold with corners \(M \)

\[\partial M = \prod_{A \in \text{CA}, |A| \geq 2} \{(p, c) : p \in C^0_A(M), c \in C_A(T_{p_\alpha}M)\} \]

A complete proof would be Hell on Earth, and I'm not sure it was ever written. Sketch:

Blunders:
1. Is a manifold w/ corners automatically a mod w/ boundary?
2. The discussion of the right tangent space on the left was lacking.
Thm 1. \(M \) compact \(\Rightarrow\) \(C_A(M) \) compact.

2. Singletons & doubletons:

3. \(B \subset A \Rightarrow \exists P_B : C_A(B) \to C_B(A) \). In particular,
\[\exists \phi_{ij} : C_A(I^m) \to C_{\phi_{ij}}(I^n) \sim S^{n-1} \]

4. If \(P : M \to N \) is a smooth embedding,
\[\exists f_* : C_A(M) \to C_A(N) \]

Skip section in bracket about \(C_D(M) \).

\[C^0_D(M) := \{ p : A \to M : p(a_0) \neq p(a_1) \text{ whenever } a_0 \rightarrow a_1 \} \]

Definition 9. Write \(S^n = \mathbb{R}^n \setminus \{0\} \) and set \(\tilde{C}_A(\mathbb{R}^n) := \{ c \in \tilde{C}_A(\mathbb{R}^n) : p_\infty(c) = \infty \} \).

Theorem 10. \(\tilde{C}_A(\mathbb{R}^n) \) is a compact manifold with corners and the direction maps \(\phi_{ij} : \tilde{C}_A(\mathbb{R}^n) \to S^{n-1} \) remain well-defined.

Finally, given \(\gamma : S^1 \to \mathbb{R}^3 \) and disjoint finite sets \(A \) and \(B \), we set
\[C^*_A,B := \{ (c',c) : c' \in C_A(S^1), c \in C_{A,B}(\mathbb{R}^3), \gamma(c') = p_A(c) \} \]
(and similarly \(C^*_D \) for appropriate graphs \(D \)). The obvious variants of the theorems remain valid.