HW7 returned, HW8 due, HW9 on web.

Last time: Given \(g \), \(W_g : A(g) \rightarrow U(g) \):

\(A \) is a "universal universal enveloping algebra"

Today's goals: The bi-algebra story, tangles

\(A \) is an algebra and so is \(U \). Is \(A \) a bi-algebra?

1. Define algebra \((A, m, \varepsilon, \text{ diagrams}) \)
2. Define co-algebra \((C, \Delta, \varepsilon, \text{ diagrams}) \)
3. Define bi-algebra.
4. \(A \) is a bi-algebra

\[\exists \phi : A \rightarrow A \otimes A \text{ s.t. } \forall V_1, V_2 \in \mathcal{V} \]

\[W_{V_1 V_2} = m_{\otimes} (W_{V_1} \otimes W_{V_2}) \circ \phi \]

6. Warning: Given \(g \)

\[(A, m, \varepsilon) \Leftrightarrow (U(g), m, \varepsilon) \]

Questions:
1. What is \(\Delta \) in \(A \) language?
2. What is \(\varepsilon \) in \(U(g) \) language?

Tangles [knots]

1. Delete an edge
2. Double an edge
3. Planar algebra

Question: What is gray? What's "an expansion"?