14-1100 Sep 22, hours 7-8: Simplicity of \$A_n\$, group actions
HW1 is out V_{6}
Riddle Along. 1. Can you find uncountably many nearly-disioint $\left[\forall \alpha, \beta\left|A_{\alpha} \cap A_{\beta}\right|<\infty\right]$ subsets of \mathbb{N} ?
2. Can you find an uncountable chain $\left[\forall \alpha_{1},\left(A_{\alpha} \subset A_{\beta}\right) \cup\left(A_{\beta} \subset A_{2}\right)\right]$ of subsets of \mathbb{N} ?
Today's Menu. Simplicity of A_{n}, Group actions.
Remindor. sign: $S_{n} \rightarrow\{ \pm 1\}$ by $\operatorname{sig}(\sigma)=(-1)^{\sigma}=\operatorname{sig}\left(\prod_{i c j}\left(\sigma_{i}-\sigma_{j}\right)\right)$

$$
\begin{aligned}
& =\prod_{\{i, j\} \subset\{1, j n} s_{i, n}(\sigma) \quad \sin _{i, j}(\sigma)=\operatorname{sigh}\left(\frac{\sigma i-\sigma j}{i-j}\right) \\
& (-1)^{\sigma} \stackrel{\bar{U}}{=} \operatorname{sign}\left[\prod_{\{i, j\}} \frac{\sigma \tau i-\sigma \tau_{j}}{\tau i-\tau j} \frac{\tau i-\tau j}{i-j}\right]=(-1)^{\sigma}(-1)^{\bar{u}}
\end{aligned}
$$

Every permutation is a product of transpositions,
The parity is the parity of the number of transpositions.
Theorem. An is simple for $n \neq 4$.
Cycle Decomposition. (12)(345) $=[21453]=21453$
Claim If $\sigma=\left(a_{1} \ldots a_{k}\right)$ and $\tau=\left[\tau_{1} \tau_{2} \ldots \tau_{1}\right]$,
then $\sigma^{\tau}=\tau^{-1} \sigma \tau=\left(\tau^{-1}\left(a_{1}\right), \tau^{-1} a_{2}, \ldots\right)$
Corollary σ is conjugate to σ ' iff they have
the same cycle lengths
Corollary \#(Conjugacy classes of $\left.S_{n}\right)=P(n)$
Now follow handout.....
Jordun-HiAldor for $S_{n}: \quad S_{n} \Delta A_{n} \Delta\{e \xi \quad(n \geqslant 5)$
Definition A G-set (left-G-sit) $G \times X \rightarrow X$
sit. $\left(g_{1} g_{2}\right) x=g_{,}\left(g_{2} x\right), b x=x$. Same as $\alpha: G \rightarrow s(x)$.

G-sets are a category!
Examples. O. G itself, under malt. on the left.

1. G itself, wald ar conjugation.
2. Subgroup (G), under conjugation.

Examples:1. G/ H when $1 t$ is not-necessarily normed
Sub-example: $\quad S_{n} / S_{n-1} \quad \sigma S_{n-1}=\sigma / S_{n-1}$ iff
$\sigma(n)=\sigma^{\prime}(n)$. Let $\tau_{i}(n)=i$, then
$\sigma \tau_{i} S_{n-1}=\tau_{\sigma} S_{n-1}$. So S_{1} / s_{n-1} is $\left.q / \ldots n\right\}$
2. If x_{1}, x_{2} are G-sets, then so is $x_{1} \perp x_{2}$.
3. $s^{2}=50(3) / s 0(2)$
done
Theorem. 1. Every G-set is a disjoint union of "transition
G-sots
2. If X is a transitive G set and $x \in X$, then

$$
x \cong G\left(\operatorname{stab}_{x}(x) \cdot(\text { so }|x|| | G \mid)\right.
$$

Theorem. If X is a G set and x; are representatives of the orbits, then

$$
|x|=\sum_{i} \frac{|G|}{\left|\operatorname{sta} b_{x}\left(x_{i}\right)\right|}
$$

Example. If G is a p-group, the centre of G is more than $\{e\}$.

