$yxy' = x or x^2 or xy'$ $z/z/1 = x or x^2 or xy'$ 150morphy

Exercise: Ø:H > Aut(N); MEAutH, VEAut(N) $\beta \eta: H \rightarrow Aut(N) \qquad (\beta^{\nu})_{h} = \nu^{-\nu} \otimes_{h} \circ \nu$ $\mathcal{O} \in Hom(H, Aut(N))$

Then $N \times_{\phi} H \cong N \times_{\phi \eta} H \cong N \times_{\phi v} H$.

In our case $\beta_y = \beta_2 \circ \eta$ where $\eta: \mathbb{Z}/3 \to \mathbb{Z}/3$

Solvable Groups. Def & is solvable if all quotients

in its Jordan-Hölder series are Abelian.

Thm I. If NAG, & is solvable iff N & G/N are.

2. If H

ADB HADHAB 2 V HAB -> BADY [b] HAD -> [b] AND I'S injective.

Cor. If a group contains An 174, it is not solvable.

Turn test line.

Rings.

Definition 2.1.1. A ring consists of a set R together with binary operations + and \cdot satisfying:

 $1.\ (R,+)\ forms\ an\ abelian\ group,$

2. $(a \cdot b) \cdot c = a \cdot (b \cdot c) \ \forall a, b, c \in R$,

3. $\exists 1 \neq 0 \in R \text{ such that } a \cdot 1 = 1 \cdot a = a \ \forall a \in R, \text{ and}$

4. $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c \ \forall a,b,c \in R$.

Also Jefino. Computativo ving.

Examples. Z, R[x], $M_{nxn}(R)$ M_{orp} is M_{ox} , $M_{nxn}(R)$ as dig M_{ox} , $M_{nxn}(R[x]) = M_{nxn}(R)[x]$ $M_{nxn}(R[x]) \cong M_{nxn}(R)[x]$

im, subring, ker, ideal. Q. Is every ideal a quotient. Ans. Define R/I.

Good luck w/ term test !