14-1100 Oct 16, hour 16: G12, G21, Solvable groups
october-10-14 1:09 PM
Further return HWI
HW2 due!
TT next class, Mon. oct $201^{10}-3 \mathrm{PM}$ here
Material: Everything on groups. See oldies
Final exam: Mandy Dec 8 Topi Wed Dec 10 Andysis; Thu DCC 11 DE Algebra: Fri Dec 12 or Mon DeC 15 ? Time
Groups of order 12. $P_{4}=\mathbb{Z} / 4$ or $(\mathbb{Z} / 2)^{2}, P_{3}=\mathbb{Z} / 3$, at least one of Rose is normal, So:

$$
G=\mathbb{Z} / 3 \times \mathbb{H} / 4: \operatorname{Ant}(\pi / 3)=\mathbb{Z} / 2 \text { so }
$$

Z/12 or no-naml $Z / 3 X_{\text {parity }} \mathbb{Z} / 4$

$$
\begin{aligned}
& G=\mathbb{Z} / 3 \times(\mathbb{Z} / 2 \times \mathbb{Z} / 2): \mathbb{Z} / 6 \times \mathbb{Z} / 2 \text { or } S_{3} \times \mathbb{Z} / 2=0_{12} \\
& G=\mathbb{Z} / 4 \times \mathbb{Z} / 3 \quad \operatorname{Aut}(\mathbb{Z} 4)=\mathbb{Z} / 2 \Rightarrow \quad \pi / 12 \\
& G=(\mathbb{Z} / 2 \times \mathbb{Z}) \times \mathbb{Z} / 3 \quad \operatorname{Aut}(\mathbb{Z} / 2 \times \mathbb{Z} / 2)=s_{3} \Rightarrow \\
& \\
& (\text { direct }) \quad \mathbb{Z} / 6 \times \mathbb{Z} / 2
\end{aligned}
$$

$$
\begin{aligned}
& (13)(24) \\
& (14)(23)
\end{aligned}
$$

Groups of order 21. $\mathbb{Z} / 21, \mathbb{Z} / \neq \mathbb{Z} / 3=\langle x\rangle \times\langle y\rangle$
$\operatorname{Aut}(\pi / 7)=\pi / 6=\langle\nu\rangle ; \nu(x)=x^{3} ;\left.\quad y\right|_{i} ; \nu^{\circ}$ or ϕ_{2} or $V^{\phi_{1}} 4$

$$
y x y^{-1}=\underbrace{x}_{2 / 21} \text { or } \underbrace{x^{2} \text { or } x^{4}}_{\text {isomorphic }}
$$

Exercise: $\varnothing: H \rightarrow \operatorname{Aut}(N) ; \eta \in A u t H, \nu \in \operatorname{Aut}(N)$

$$
\varnothing \eta: H \rightarrow \operatorname{Ant}(\nu) \quad\left(\varnothing^{\nu}\right)_{h}=\nu^{-1} \cdot \varnothing_{h} \circ \nu
$$

$$
\phi^{\nu} \in \operatorname{Hom}(H, \operatorname{Ant}(N))
$$

Then $N X_{\phi} H \cong N X_{\phi \eta} H \cong N X_{\phi \nu} H$.
In our case $\phi_{4}=\varnothing_{2}$ o $\quad \begin{gathered}\text { where } \eta: \mathbb{Z} / 3 \rightarrow \mathbb{Z} / 3 \\ 1 \perp .1\end{gathered}$

In our case $\phi_{4}=\phi_{2}$ o \quad Where $\eta: \mathbb{Z} / 3 \rightarrow \mathbb{Z} / 3$

Solvable Groups. Def G is solvable if all quotients in its Jordan-Hölder Series are Abolian.
Thm1. If $N \Delta G$, G is solvable iff $N \notin G / N$ are.
2. If $H<G$ and G is solvable, so is H.
$A \nabla B \quad H \cap A \nabla H \cap B ? \vee \quad H \cap B / H \cap A \rightarrow B / A$ by $[b]_{H \sim A_{i}} \rightarrow[b]_{A_{t}}$ is injoctive.
Cor. If a group contains $A_{n} n \neq 4$, it is not solvable.
Turmtest line.
Rings.
Definition 2.1.1. A ring consists of a set R together with binary operations + and satisfying:

1. $(R,+)$ forms an abelian group,
2. $(a \cdot b) \cdot c=a \cdot(b \cdot c) \forall a, b, c \in R$,
3. $\exists 1 \neq 0 \in R$ such that $a \cdot 1=1 \cdot a=a \forall a \in R$, and

Also define.
commutative ring.
4. $a \cdot(b+c)=a \cdot b+a \cdot c$ and $(a+b) \cdot c=a \cdot c+b \cdot c \forall a, b, c \in R$.

Examples. $\mathbb{Z}, R[x], M_{n \times n}(R)$
imp, subring, kier, ideal.
Q. Is ivory ideal a quotient.

Ans. Define R/I.
Good luck w/ term test?

