14-1100 Nov 6, hour 25: Finish rings, start modules
HW. HW3 due, HWY on web
Riddle along: A game: Player A writes the numbers 1-18 on the faces of three blank dice, to her liking. Player B takes one of the 3 dice. Player B takes one of the remaining two, and throws away the third. Player A and B then play 1,000 rounds of "dice war" with the dice they hold. Whom would you rather be, player A or player B ?
Global goal: $M \mathrm{Fg}$. module over a PIO $K \Rightarrow$ uniquely
IT3C4W:

$$
M \cong R^{k} \oplus \oplus R /\left(p_{i}^{s_{i}}\right) \begin{aligned}
& p_{i} \text { prime } \\
& s_{i} \geqslant 1
\end{aligned}
$$

Cor l. A FIg Abclian $\Rightarrow A \approx \mathbb{Z}^{k} \oplus \oplus \not \subset / p_{i}^{s i}$
Cor 2. $A \in M_{\text {nAM }}(\mathbb{C})$ has a "Jordan form"
Today. Finish rings, start modules. Reminders. Euc $\Rightarrow P I D \Rightarrow U F D$
theron. PID \Rightarrow VF.
What Take $x=x_{1}$; unless $x_{1} \in R^{2}, x_{1} \in M$, where M_{1} is a proof. maximal ideal containing $\left\langle x_{1}\right\rangle \quad M_{1}=\left\langle p_{1}\right\rangle$,

$$
p_{1} \text { prime. So } x_{1}=p_{1} x_{2} \text { j unless } x_{2} \in R^{*} \quad x_{2} \in\left\langle x_{3}\right\rangle \subset M_{2} \text { maxionl }
$$

$M_{2}=\left\langle P_{2}\right\rangle, \quad x_{2}=\rho_{2} x_{3}, \ldots$ if process was inf init,

$$
\left\langle x_{1}\right\rangle \nsubseteq\left\langle x_{2}\right\rangle \nsubseteq\left\langle x_{3}\right\rangle \nsubseteq \ldots
$$

$$
\left\langle x_{n}\right\rangle c\left\langle x_{n+1}\right\rangle \text { as } x_{n}=p_{n} x_{n+1}
$$

if $x_{n+1} \epsilon\left\langle x_{n}\right\rangle, \quad x_{n+1}=a x_{n}$ so
But a PID is "Noetherian", $x_{n}=p_{n} a x_{n} \& p^{\prime} s$ not $/$ imp.
So the process must terminate.
So $x=x_{1}=P_{1} x_{2}=P_{1} R_{2} x_{3}=\ldots=P_{1} P_{2} \ldots P_{n} h$
theorem. In a PID $\langle a, b\rangle=\langle g C d h a, b)$. (so $\operatorname{gcd}(a, b)=s a+t b)$
The Euclidean Algorithm. In a Euc. Domain, a
practical algorithm for finding $s(u, b) \& t(a, b)$ as
above: $W L O G, l(a) \geqslant l(b)$
If $\langle a, b\rangle=\langle b\rangle$, take $(s, t)=(0,1)$. Otherwise

$$
a=b q+r, \quad e(r)<l(b),
$$

$\langle a, b\rangle=\langle b, r\rangle$ so if $g=s^{\prime} b+t^{\prime} r$, then

$$
g=s^{\prime} b+t^{\prime}(a-b q)={\underset{s}{t^{\prime}}}_{t^{\prime}} a+\underbrace{\left(s^{\prime}-t^{\prime} q\right)}_{t}, b
$$

theorem. R is a PID iff it has a "Dedekind-Hasse"
norm: $d: R-\{0\} \rightarrow N_{70} \quad[$ or add $d(0)=0]$
S.t. if $a, b \neq 0$ cither $a \in\langle b\rangle$ or $\exists 0 \neq x \in\langle a$
$w / d(x)<d(b)$.
E is before \Rightarrow Replace cary prime by 2 , get
evan a "multiplicative" D-H norm.
\qquad
Definition. An R-moduli: "A vector space over a ring".
Examples. 1. V.S. over a field.
2. Abilian groups over \mathbb{Z}.
3. Given T: $V \rightarrow V$, V over $F[x]$.
4. Given ileal $I \subset \mathbb{R}$, R / I over \mathbb{R}.
5. Column vectors R^{n} over $M_{n \times n}\binom{$ Left module R-nod }{ right module mod-R } done
row vectors (Raj over $R_{\text {nan }}$ Oce/Claim. R-mod \& mod-R are categories.
Def/claim. Submodules, $k c r \phi, \operatorname{sen} \varnothing, M / N$
Boring Theorems. 1. $\phi: M \rightarrow N \Rightarrow M / k e r \phi \simeq \operatorname{im} \phi$

$$
\begin{aligned}
& \text { 2. } A, B \subset M \Rightarrow A+B / B \cong A / A \cap B \\
& \text { 3 } A \subset B \subset M \Rightarrow M / A / B / A \cong M / B
\end{aligned}
$$

4. Also dull.

Divert sums. $M, N \Rightarrow M \oplus N$

$$
1 n \quad n \quad l / a \ldots a_{11}
$$

$\operatorname{Hom}\left(\pm N_{i,}, \oplus M_{i}\right)=\left\{\left(\begin{array}{cc}a_{11} & -r_{1} \\ a_{m 1} & a_{m n}\end{array}\right): a_{i j} \in \operatorname{Hom}\left(M_{i}, N_{j}\right)\right\}$
Example: $\quad \operatorname{dim}(V \oplus W)=\operatorname{dim} V+\operatorname{dim} W$.
Example: if $\operatorname{gcd}(a, b)=1 \quad 1=s a+t b \quad[l . g$., if R is a PID $]$
$Z / 7 \otimes Z / 1 \otimes Z / 13 \cong Z / 77 \otimes Z / 13 \cong Z / 1,001$ "the chinese remainder

