Unitary statement. There exists $\omega \in \text{Fun}(g)^G$ and an (infinite order) tangential differential operator V defined on $\text{Fun}(g_x \times \mathcal{U})$ so that
1. $V \hat{e}^{\omega + \gamma} = \hat{e}^{\omega} \hat{e}^{\gamma} V$ (allowing $\mathcal{U}(g)$-valued functions)
2. $VV^* = I$
3. $V \omega_x \gamma_y = \omega_x \omega_y$

The Orbit Method. By Fourier analysis, the characters of $(\text{Fun}(g)^G, \cdot)$ correspond to coadjoint orbits in g^\perp. By averaging representation matrices and using Schur’s lemma to replace intertwiners by scalars, to every irreducible representation of G we can assign a character of $(\text{Fun}(G)^G, \cdot)$.

* Implies convolutions, which implies