Day 8 Doodlings

June-05-13 1:52 PM

> Unitary statement. There exists $\omega \in \text{Fun}(\mathfrak{g})^G$ and an (infinite order) tangential differential operator V defined on Fun($g_x \times$

Which completion ?

(1) $\widehat{Ve^{x+y}} = \widehat{e^x}\widehat{e^y}V$ (allowing $\widehat{\mathcal{U}}(\mathfrak{g})$ -valued functions) (2) $VV^* = I$ (3) $V\omega_{x+y} = \omega_x\omega_y$

* Implies Convolutions; Which implies

The Orbit Method. By Fourier analysis, the characters of $(\operatorname{Fun}(\mathfrak{g})^G, \star)$ correspond to coadjoint orbits in g*. By averaging representation matrices and using Schur's lemma to replace intertwiners by scalars, to every irreducible representation of G we can assign a character of $(\operatorname{Fun}(G)^G, \star)$.

