2.3. F.T.I of v-braids & w-braids.

2.3.1 The "classical/pictorial" approach.

1. F.T. for knots

2. semi-virtual xings,

$$V(X) := V(M) - V(N)$$

"Type $m \iff V(\geq m \text{ s.v.}) = 0$$

$$w = W_m(V) := V|_{\text{braids with exactly } m \text{ s.v.}}$$

$$G_m : M_{\text{sing}} / M_{\text{sing}}$$

= arrow diagrams

Claim. w satisfies the "6T" relation.

pf.

$$V\left(\begin{array}{c} x \\ m-2 \text{ other} \\ \text{s.v.} \end{array}\right) = V\left(\begin{array}{c} x \\ m-2 \text{ other} \\ \text{s.v.} \end{array}\right)$$

Now write $0 \mapsto s_i + (s_i - s_i) = s_i + \overline{s_i}$
Claim. In the w case, W satisfies $OC \& \nabla^2$. In the u case,...

Definition. A^w_n, A^v_n, A^u_n

Definition 2.11 An expansion $\tau: v\beta_n \to A^u_n$

Theorem. An expansion exists iff every W comes from a V.

2.3.2 Fi-T-I, The “algebraic” approach.

Start from a general group G,

define $FG, T, A_k(G)$, expansion

Claim. An invariant of v-braids is of type m iff it vanishes on T^m.

Claim. $A^v_n \to A_k(v\beta_n)$

Def. Expansion $\tau: G \to A_k(G)$

Claim An A^v_n-expansion implies an expansion $\tau: A_k(G) \to A^v_n$.

Claim. A_k is a functor.