$$
\begin{aligned}
& y^{\prime \prime}+\frac{1}{1-x} y=0 \quad y=\sum a_{n} x^{n} \\
& \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k}\right) x^{n}=0 \\
& \sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}+\sum_{k=0}^{n} a_{k}\right] x^{n}=0 \\
& a_{0}=1 \quad a_{3}=\frac{1}{6}\left(\frac{1}{\alpha}\right)=\frac{1}{12} \\
& a_{1}=0 \quad \\
& a_{2}=-\frac{1}{\alpha} \quad a_{y}=\frac{1}{12} \cdots \\
& \begin{array}{l}
\left.y^{\prime \prime}+p(x) y^{\prime}+q / x\right) y=0 \quad \\
(n+2)(n+1) a_{n+2}+\sum_{k} p_{n-k}(k+1) a_{k+1} \\
y^{\prime}=\sum n a_{n} x^{n-1} \\
=\sum(n+1) a_{n+1} x^{n} \\
y^{\prime \prime}=\sum(n+2)\left(n+1 n_{n+2} x^{n}\right.
\end{array} \\
& \hline
\end{aligned}
$$

Claim If $\left|P_{n}\right|,\left|a_{n}\right| \leqslant c_{1} \cdot \rho^{n}$ then $\left|a_{n}\right| \leqslant c_{2} \rho^{n}$

PE By induction. No issue for $a_{0} \& a_{1}$. Then

$$
\begin{align*}
a_{n+2} & =\frac{-1}{(n+1)(n+2)} \sum_{k=0}^{n}\left[(k+1) p_{n-k} a_{k+1}+a_{n-k} a_{k}\right] \\
\left|a_{n+2}\right| & \leqslant \frac{1}{(n+1)(n+2)} \sum_{k=0}^{n}\left[(k+1)\left|P_{n-k}\right|\left|a_{k+1}\right|+\left|a_{n-k}\right|\left|a_{k}\right|\right] \\
& \leqslant \frac{c_{1} c_{2}}{(n+1)(n+2)} \sum_{k=0}^{n}\left((k+1) \rho^{n+1}+\rho^{n}\right)
\end{align*}
$$

$$
\begin{aligned}
& \leqslant\left(\overline{(n+1)(n+2)} \sum_{k=0}(k+1) \rho^{\prime \cdots}+\rho^{\prime \prime}\right) \\
& =C_{1} c_{2}\left(\frac{1}{2} \rho^{n+1}+\frac{1}{n+2} \rho^{n}\right) \leqslant \\
y^{\prime} & =10 y \quad(n+1) a_{n}=10 a_{n-1} \\
a_{n+2} & =\frac{-1}{(n+1)(n+2)} \sum_{k=0}^{n}\left[(k+1) p_{n-k} a_{k+1}+a_{n-k} a_{k}\right]
\end{aligned}
$$

Claim If $\left|\rho_{n}\right|,\left|a_{n}\right| \leqslant C_{1} \rho_{1}^{n} \& \rho_{2}>\rho_{1}$, then
For some $C_{2},\left|a_{n}\right| \leqslant C_{2} \rho_{2}^{n}$.
PE By induction.

$$
\begin{aligned}
& \left|a_{n+2}\right| \leqslant \frac{1}{(n+1)(n+2)} \sum_{k=0}^{n}\left[(k+1)\left|\rho_{n-k}\right|\left|a_{k+1}\right|+\left|a_{n-k}\right|\left|a_{k}\right|\right] \\
& \leqslant \frac{C_{1} c_{2}}{(n+1)(n+2)} \sum_{k=0}^{n} \rho_{1}^{n-k}\left((k+1) \rho_{2}^{k+1}+\rho_{2}^{k}\right) \\
& \left.=\frac{C_{1} c_{2}}{(n+1)(n+2)} \sum_{k=0}^{n} \rho_{2}^{n-k}\left(\rho / / \rho_{2}\right)^{n-k}\left((k+1) \rho_{2}^{k+1}+\rho_{2}^{k}\right)\right) \\
& =\frac{C_{1} c_{2}}{(n+1)(n+2)} \rho_{2}^{n} \sum_{k=0}^{n}\left(\frac{\rho_{1}}{\rho_{2}}\right)^{k}\left((n-k+1) \rho_{2}+1\right)
\end{aligned}
$$

Want: $a_{n+1} \leqslant\left(\rho_{2}+\frac{c}{n}\right) a_{n} Z_{0}$

