2670DEs-121127, Hour 32: Basic oscillation and non-oscillation
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BAil = WDSolve[y''[x] +x¥[x] =0 && ¥[0] =1 e ¥'[0] =0,
¥lxl, (%, -3, 10}3]:
AiZ = KDSolve[y''[X] +X¥[x] =0 && ¥[0] =0 e ¥y [0] =1,

¥ix]l. {x, -3:10}],
Al = Jodm[ad1, Ai2] 2 m
[[¥[x] - InterpolatingFunction] [[-3., 10.}}, <=][x]],
[¥[%] = InterpolatingFunction[{{-3., 10.]}, <=][X]}] oﬁ/

Plot[Evaluate[y[x] /. A1, {x, -3, 10}]
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Theorem 3.1. If g(x) < 0 for every r in some connected s /
subset I of R, then any solution of y" + qy = 0 may have at I .
mast one zero on 1. I /

Example 3.1. Consider the solutions of " — y = 0 with
y(0) = 1 and '(0) = ¢, for c £ {1,0,-09 -1, -2}

“oo oy rMesn Plot[Evaluate[Table|
¥lx] /.
§G4f\\j +£7 1-7& DSolve[y'" [X] - F[X] =0
&& Y[0] =1 && ¥'[0] = ¢,

OWW) "\ yixl. x].

{cs {1, 0, -0.9;, -1, -2}}
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Theorem 3.2. If g(z) is continuous and g(x) = 0 for all z > A and if [ g(z)dr = oo,
then any solufion to y" + qy = 0 has infinitely many zeros for r = A

FProof. Suppose not. Then there i= a solution y for which y(z) = 0 for all = = B, for some
E = A If we had ¢'(C7) < 0 for some ' = B, then as ¢" < 0 and therefore y' i decreasing,
we'd have that ¢'(z) < 0 for all + = C, and therefore there is some r = C with y(z) = 0. So

it must be that '(x) = 0 for all » = B. Now consider V(2] := _il'::'_ We already know it
is negative for all = = B. Yet
e 2,
o LI W
¥ y

V(r) = V(B) + j; VI(t)dt = V(B) + j; Vidt + L gt

But as [ g(t)dt is divergent, the above quantity will become positive for large enough x,
contradicting the negativity of V{z). O
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and hence
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4.1. Changing the Dependent Variable. If y satishes " + p(x)y’ + g(r)y = 0 and we
set y = plx)V, where u satishes 2p’ + pp = 0, then V satishes V" + Q)1 = 0, where
) = g — ¢ — 37 The good news is that V' has exactly the same zeros as y, so the
“frequency” of the oscillatory behaviour of ¥ may be studied by studying V" + Q(=)V = 0.
Though note that “amplitudes” are modified.

4 i . [Wel = m::ln[
Example 4.1. For Bessel's equation of order woopag + [2e ) vpm = 0

0, y"+ %yr +y = 0, which a§5eared here in Ex- 56 V[1] =1 & V[3] =1/ 3,

ample 1.1, setting V' = vields the equa- ]:F]' e S

tion V" + U F El!} V = : which oscillates 'L-,:r Plot[Evalusta[(¥[=] . Jo. ¥[=] /. Wal], = 1, E0}]
Theorem 3.2
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