

Ai1 = NDSolve[y''[x] + xy[x] = 0 & y[0] = 1 & y'[0] = 0, y[x], (x, -3, 10)];

A12 = NDSolve[y''[x] + xy[x] = 0 & y[0] = 0 & y'[0] = 1, $y[x], \{x, -3, 10\}];$

Ai = Join[Ai1, Ai2]

 $\{\{y[x] \rightarrow InterpolatingFunction[\{\{-3., 10.\}\}, <>][x]\},\}$ $\{y[x] \rightarrow InterpolatingPunction[\{\{-3., 10.\}\}, <>][x]\}\}$

Plot[Evaluate[y[x] /. Ai], {x, -3, 10}]

Added Occ 5, 2012: I should have contared the qualifatives analysis discussion around one or tub wamples & Study than to the ultimate detail.

some general words about y"+44=0 & "veturning ForCo

Theorem 3.1. If q(x) < 0 for every x in some connected subset I of \mathbb{R} , then any solution of y'' + qy = 0 may have at most one zero on I.

Example 3.1. Consider the solutions of y'' - y = 0 with y(0) = 1 and y'(0) = c, for $c \in \{1, 0, -0.9, -1, -2\}$.

"TOO COM MAN Plot[Evaluate[Table[Sansy to be y[x] / DSOLVE[y''[x] - y[x] = 091VON 1 For MN prop'' {c, {1, 0, -0.9, -1, -2}} [2], {x, 0, 2}, AspectRatio \rightarrow 2]

Example Airy y"+xy=0 & nogative x.

Theorem 3.2. If q(x) is continuous and q(x) > 0 for all $x \ge A$ and if $\int_A^\infty q(x)dx = \infty$, then any solution to y'' + qy = 0 has infinitely many zeros for $x \ge A$.

Proof. Suppose not. Then there is a solution y for which y(x) > 0 for all $x \ge B$, for some $B \ge A$. If we had $y'(C) \le 0$ for some C > B, then as y'' < 0 and therefore y' is decreasing, we'd have that y'(x) < 0 for all x > C, and therefore there is some x > C with y(x) = 0. So it must be that y'(x) > 0 for all $x \ge B$. Now consider $V(x) := -\frac{y'(x)}{y(x)}$. We already know it is negative for all $x \ge B$. Yet

$$V' = -\frac{y''y - y'^2}{y^2} = \frac{qy^2 + y'^2}{y^2} = q + V^2,$$

and hence

$$V(x) = V(B) + \int_{B}^{x} V'(t)dt = V(B) + \int_{B}^{x} V^{2}dt + \int_{B}^{x} qdt.$$

But as $\int_{B}^{\infty} q(t)dt$ is divergent, the above quantity will become positive for large enough x, contradicting the negativity of V(x).

Example: Airy @ Positive X.

But what about Bessel

 $2(2y'' + xy' + (x^2 - x^2)y = 0)$

4.1. Changing the Dependent Variable. If y satisfies y'' + p(x)y' + q(x)y = 0 and we set $y = \mu(x)V$, where μ satisfies $2\mu' + p\mu = 0$, then V satisfies V'' + Q(x)V = 0, where $Q = q - \frac{1}{4}p^2 - \frac{1}{2}p'$. The good news is that V has exactly the same zeros as y, so the "frequency" of the oscillatory behaviour of y may be studied by studying V'' + Q(x)V = 0. Though note that "amplitudes" are modified.

Example 4.1. For Bessel's equation of order 0, $y'' + \frac{1}{x}y' + y = 0$, which appeared here in Example 1.1, setting $V = \sqrt{xy}$ yields the equation $V'' + \left(1 + \frac{1}{4x^2}\right)V = 0$, which oscillates by Theorem 3.2:

All done, except the VE factor was not compreted.

(V₀) = NDSolve[V''[x] + (1 + \frac{1}{42^2}) V[x] = 0 && V[1] = 1 && V'[1] = 1 / 2, V[x], (x, 1, 50)]; Plot[Evaluate[(y[x] /. J₀, V[x] /. V₀)], (x, 1, 50)]

