Let n be an integer. How many ways are there to tile the n-staircase with exactly n rectangles?

$$y'' + p(x)y' + q(x)y = 0 \quad \frac{v_1 = y}{v_2 = y'} \quad V' = \begin{pmatrix} 0 & 1 \\ -q & p \end{pmatrix} V$$

Let y_1, y_2 be independent solutions, $W = \begin{pmatrix} y_1 & y_2 \\ y_1' & y_2' \end{pmatrix}$

$$W' = -PW \quad \text{(*Abel's Thm*)}$$

Example. $y'' + y = 0$

Problem: Find a power series $y(x) = \sum_{k=0}^{\infty} a_k(x-x_0)^k$ that solves the equation $y' = f(x, y)$

Motivation:
1. Minor: Combinatorics.
2. Major: Power series are easy at large scale, but excellent at small scales. See QED $w/ x = \frac{1}{\sqrt{x}}$.

```
In[1]: PowerSeriesSolve[f_, xo_, y0_, n_] := 
    Do[
      phi[k] = y0 + Integrate[Normal[Series[f /. y -> phi[k-1], {x, xo, k-1}]] /. x -> t, 
        {k, 1, n}];
      phi[0] = y0;
    ];

In[2]: PowerSeriesSolve[Sqrt[1 + x^2], 0, 0, 5]
Out[2]= x - \frac{x^3}{6} + \frac{x^5}{120}

In[3]: PowerSeriesSolve2[f_, xo_, y0_, n_] := Module[{phi = y0},
    Do[
      phi[k] = D[f /. y -> phi[k-1], {x, k-1}] /. x -> xo,
        {k, 1, n}];
    phi[0] = y0;
    ];

In[4]: PowerSeriesSolve2[Sqrt[1 + x^2], 0, 0, 10]
Out[4]= x + \frac{x^3}{6} + \frac{x^5}{50} + \frac{x^7}{5040} + \frac{x^9}{362880}

In[5]: Series[Sinh[x], {x, 0, 10}]
Out[5]= x + \frac{x^3}{6} + \frac{x^5}{50} + \frac{x^7}{5040} + O[x^{11}]
```

Little on power series.
Little on power series.

Theorem 1. Given \(\sum a_n x^n \), the “radius of convergence,” \(R \), is

- **absolutely convergent** if \(|x| < R \)
- diverges if \(|x| > R \).

If \(|x| = R \), “it depends.”

\[R = \sup \{ r : a_n r^n \to 0 \} \]

- \(= \sup \{ r : |a_n r^n| \text{ is bounded} \} \)

Theorem 2. (Loose) 1. If \(f \) has a formula, it has a natural extension to \(C \).

2. In that case, \(R \) is the distance from \(0 \) to the nearest point in \(C \) in which the formula fails.

Examples. 1. \(\sin x = \frac{e^{ix} - e^{-ix}}{2i} \)

2. \(\frac{1}{1 + x^2} = 1 - x^2 + x^4 - x^6 \ldots \)

Problem. Given \(y'' + p(x)y' + q(x)y = g(x) \), find a power series \(y = \sum a_n x^n \) that solves this eqn.

Do the \(y'' + y = 0 \) example.

Do the Airy example \(y'' = xy \)

State Fuchs’ Theorem: The series for \(y(x) \) converges at least the last \(R \) for \(p(x) \).

Mathematica Code:

```mathematica
In[1]:= NDSolve[y''[x] - x y[x] == 0, y[x], {x, -10, 3}];
In[2]:= NDSolve[y''[x] - x y[x] == 1, y[x], {x, -10, 3}];
In[3]:= Plot[Evaluate[y[x] /. In[1], {x, -10, 3}]]
```

Plot:

![Graph of solutions](image-url)