HW7 is on web.
comment z $\operatorname{rank} A=\operatorname{rank} P A Q$ whenever
$P \in M_{m \times m} \& Q \in M_{n \times n}$ are invertible
$\backslash^{\prime \prime}(\eta)=$ Look for $P \& Q$ that will minke
$Q A Q$ simple re than A.
Q1 Which P, Q ? Q2 What's simpler?
Ans $2 \operatorname{rank}\left(\begin{array}{ccc}1 & 1,5 k & 0 \\ 0 & 0\end{array}\right)=\operatorname{rank}\left(\left.\frac{I_{k}}{0} \right\rvert\, \frac{0}{0}\right)=k$
Ans) Exary/is of "your" D / Q : "dinatay mantras

1. interchanging rous/columes.

$$
E_{i, 0}^{\prime} \quad\left(\frac{r_{i} \leftrightarrow r_{j}}{r_{i}}\right) \cdot r\left(\frac{c_{i} \leftrightarrow c_{i}}{r}\right)
$$

2. Mutitijuby rec ky a scalar.

$$
\left.E_{i, c}^{2} \quad r_{i} r_{i *}=c_{c}\right) \times\left(c_{i} *=c_{s}\right)
$$

The Every matrix A can be rec-reducte to a A did Ducted I shall have used this notions block matrix of the form $\left(\begin{array}{cc}I_{k} & 0 \\ 0 & 0\end{array}\right)$.
Problem. Find the rank the matrix

$$
A=\left(\begin{array}{ccccc}
0 & 2 & 4 & 2 & 2 \\
4 & 4 & 4 & 8 & 0 \\
8 & 2 & 0 & 10 & 2 \\
6 & 3 & 2 & 9 & 1
\end{array}\right)
$$

Solution. Using (invertible!) row/column operations we aim to bring A to look as close as possible to an identity matrix:

Thus the rank of our matrix is 3 .
http://drorbn.net/index.php?title=12-240/Classnotes for Tuesday November 8
claim $\operatorname{rank} A=\operatorname{rank}\left(A^{\frac{1}{\top}}\right)$ BTW, the meaning of AT in the world of lit. is quite intricate.
Cain $\operatorname{rank} A=\operatorname{dim}(\operatorname{col}-\operatorname{since}(A))=\operatorname{dim}($ row $-\operatorname{sicuc}(A))$
Suppose you could row reduce A to I. Find A^{-1}.

$$
E_{4} E_{3} E_{2} E_{1} A=I \quad \Rightarrow A^{-1}=E_{4} E_{3} E_{2} E_{1}
$$

* The hard way.
* the easy way: r.r. (A|I)

Example: compote $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)^{-1}$.

