Compositions and Multiplications

\[V/F, \text{ basis } \beta=(v_1,...,v_n) \quad W/F, \text{ basis } \gamma=(w_1,...,w_m) \]

Let \(T : V \to W \) be a linear transformation. Given a basis \(\beta \) for \(V \) and a basis \(\gamma \) for \(W \), we can construct a matrix representation of \(T \) with respect to these bases.

\[A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \]

\[T \mapsto [T]_\beta^\gamma = A \]

If you know \(A \) and \(B \) can you and \(C \) derive \(C \)?

Definition \(A \in M_{mn}, \ B \in M_{np} \) \(AB \in M_{mp} \) by \((AB)_{ik} = \sum_{j=1}^n A_{ij} B_{jk} \)

Example

\[
\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} = \ldots
\]

I should have had another example. \(TA \ V = AV \) where \(V \) is regarded as an \(n \times 1 \) matrix.

Theorem \([T \circ S]^\gamma_\alpha = [T]^\gamma_\beta [S]^\beta_\alpha \)

Example \(T_\beta \circ T_\alpha = T_{\beta + \alpha} \) for rotations.

The good and the bad about “matrix algebra”

<table>
<thead>
<tr>
<th>Good</th>
<th>Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (A+B = B+A) ((A+B)+C = A+(B+C)) (Basically all works for addition)</td>
<td>1. Addition is defined only for matrices of same dimensions</td>
</tr>
<tr>
<td>2. (A \circ (B \circ C) = (A \circ B) \circ C)</td>
<td>2. Multiplication is defined only if “right” dimensional matches, & produces an output of yet other dimensions</td>
</tr>
<tr>
<td>3. If (A \circ I = I), then (A \circ I = I)</td>
<td>3. (A^{-1}) may not exist even if (A \neq 0)</td>
</tr>
<tr>
<td>4. ((A \circ B) \circ C = AC + BC)</td>
<td>4. Generally, (AB \neq BA), even when both make sense.</td>
</tr>
</tbody>
</table>
| \(A(B + C) = AB + AC \) |\]

Proposition Given \(V \xrightarrow{\phi} V \rightarrow W \xrightarrow{\psi} W' \) with invertible \(\psi \).

1. \(\text{rank } T = \text{rank } P_{\phi}TQ \) [enough that \(Q \) surjective \& \(P \) injective]
2. \(\psi \mid_{\text{rank } T} \circ \text{im}(T) = \text{im}(T') = C \) basis \(\{w_i = T(v_i)\}_{i=1}^r \)
3. \(\psi \mid_{\text{rank } T} \circ \text{im}(T) = \text{im}(T') = C' \) basis \(\{w'_i = P(w_i)\}_{i=1}^r \)
4. \(\text{Nad: } 1. wi' \in \text{im } T' \); meaning \(\exists v' \in V' \) s.t. \(w'_i = T'v'_i \)
5. \(\text{Nad: } 2. w'_i \text{ span } C' \)
6. \(\text{Nad: } 3. w'_i \text{ are lin. indep.} \)

Def: If \(A \in \mathbb{F}^{m \times n} \), let \(\text{rank } A = \text{rank } TA \), where

- \(T_a \text{ is the standard } T_a : \mathbb{F}^n \rightarrow \mathbb{F}^m \)

Comment 1: \(\text{rank } [T]_p = \text{rank } T \)

Comment 2: \(\text{rank } A = \text{rank } P_{\phi}Q \) whenever

- \(P \in \mathbb{F}^{m \times m} \) \& \(Q \in \mathbb{F}^{n \times n} \) are invertible.

- Look for \(P \times Q \) that will make

 - \(P_{\phi}Q \) “simple” than \(A \).

Claim: \(\text{rank } \left(\begin{bmatrix} I_{m-k} & 0 \\ 0 & 0 \end{bmatrix} \right) = k \)

Examples of good \(P \times Q \): 1. Interchanging rows/columns.
2. Multiplying r/c by a scalar.
3. Adding a multiple of one r/c to another.