Riddle Along.

Read Along. 1. Y - 1.6.

Web Fact: (not visible) = (doesn’t exist).

Life Fact: No “teaching over email.”

Reminders: We seek “basis” i.e. $\text{j} \text{ c. j span j “generates”}

Def: A subset $S \subset V$ is “lin dep” if it is “wasteful.”

I.e., if $\exists \alpha \in F$ not all 0 but S sits: $\sum \alpha \text{v} = 0$.

Otherwise, it is “lin. indy.”

Examples: \[
\{v_1, v_2\}, \{w_1, (1), (2), (3)\}
\]

Conjects 1. \emptyset is lin. indy.

2. $\{v\} \text{ is lin indy iff } v \neq 0$.

3. Suppose $S_1, S_2 \subset V$. Then
 - If S_1 is dep, so is S_2
 - If S_2 is indy, so is S_1

4. If S is lin indy in V and $v \in V \setminus S$, then $S \cup \{v\}$ is lin. dep. iff $v \in \text{span}(S)$.

Def: Basis $B \subset V$.

Examples: 1. \emptyset for $\{0\}$.

2. e_i for E^n.

3. e^{ij} for $M_{\text{sym}}(E)$.

4. $(1, x, \ldots, x^n)$ for $P_n(E)$.

5. $(1, x, \ldots)$ for $P(E)$.

6. $\{(1), (-1)\}$ for \mathbb{R}^2.

Thm: A subset $\beta \subset V$ is a basis iff every $v \in V$ can be expressed in a unique way as a l.c. of elements of β.

Done
There is a subset $B \subseteq V$ which is a basis of V.

Our first non-language theorem:

Thm If a v.s. V has a finite basis, then every other basis of V has the same number of elements in it.

Def If V has a finite basis, we say that it is "finite-dimensional" and let $\dim V := \left(\text{the number of elements in (any) basis of } V\right)$.

\[\dim V = (\text{the number of elements in (any) basis of } V) \]

\[\dim V = \text{the number of elements in (any) basis of } V \]

Lemma (the replacement lemma)

Let $G \subseteq V$ be a linearly independent subset of V. Then, G is a basis for V.

Proof of Theorem from Lemma.

Informal proof of Lemma. First of all, if $\sum a_i v_i = 0$, the any vector that appears in this dependency with non-zero coeff is a l.c. of the others.

Now, let G be a basis of V.

\[\dim V = \text{the number of elements in (any) basis of } V \]

Formal proof: Induction on $\dim L$. $\dim L = 0$: trivial.

Now, $\dim L = m + 1$.

Let $L = \{v_1, \ldots, v_{m+1}\}$. Use $L' = \{v_1, \ldots, v_m\}$.

Find $H = \{u_1, \ldots, u_{m-1}\} \subseteq G$ s.t. $u_i \in \text{span}(v_1, \ldots, v_m)$ and $L'' = \{u_1, \ldots, u_{m-1}, v_{m+1}\}$ spans V.

Write $v_{m+1} = a_{-1} u_1 + \ldots + a_{-m} u_{m-1} + b_1 v_1 + \ldots + b_m v_m$.

\[\therefore \text{Not all } a_i = 0, \text{ so } n > m, \text{ so } m + 1 \in \mathbb{N} \]
... w.l.o.g. $a_i \neq 0$, so $u_i \in \text{span}(u_2, \ldots, u_{n-m}, v_i, \ldots, v_{n+1})$.

so take $H = \{u_2, \ldots, u_{n-m}\}$.

Corollaries: 1. If V has a finite basis β, then any other basis β_2 of V is also finite and $|\beta_1| = |\beta_2|$.

2. “dim V” makes sense.

3. Assume dim $V = n$. Then

a. If G generates V, $|G| = n$ if also $|G| = n$,

then G is a basis.

b. If L is linearly independent in V, then $|L| < n$.

if also $|L| = n$, L is a basis.

if also $|L| < n$, L can be extended to a basis.

4. If V is finite-dimensional and $W \subset V$ is a subspace, then W is finite-dimensional, $\dim W \leq \dim V$.

If also $\dim W = \dim V$, then $W = V$.

If also $\dim W < \dim V$, then any basis of W can be extended to a basis of V.