Theorem 1. Every G-set is a disjoint union of "transitive G-sets."

2. If X is a transitive G-set and $x \in X$, then $X \cong G/\text{stab}_G(x)$. (So $|X| = |G|/|\text{stab}_G(x)|$)

Theorem. If X is a G-set and x_i are representatives of the orbits, then

$$|X| = \sum_i \frac{|G|}{|\text{stab}_G(x_i)|}$$

Example. If G is a p-group, the Centre of G is not empty.

THE SYLOW THEOREMS.

Let G be a p-group, p prime, $p < m$. \ $\text{Syl}_p(G) = \{P \leq G : |P| = p^m \}$

are "Sylow p-subgroups of $G". A "p-subgroup" in general is any subgroup of G of order a power of p.

Sylow 1 \ $\text{Syl}_p(G) \neq \emptyset$. Also see comment at bottom.

Proof. By induction on $|G|$, if G has a normal subgroup of order p^m (or p^n) or if G has a subgroup of order divisible by p^m, we are done. The existence of one of the said types follows from the class equation:

$$\text{The centre of } G \text{, the centralizer of } y \text{ in } G$$

\[\gamma \text{ Either both are divisible by } p, \]
\[|G| = |\mathbb{Z}(G)| + \sum \left(G : C_G(y_i) \right) \]

Either both are divisible by \(p \), or neither. Do 2nd case first.

Where \(y_i \) are representatives from the non-central conjugacy classes of \(G \).

\[\square \]

Theorem. If \(G \) is a finite Abelian group of order divisible by a prime \(p \), then \(G \) contains an element of order \(p \). "Cauchy's Theorem" D&F pp 102

Proof. Enough to find an element of order divisible by \(p \): if \(p \) is of order \(p \cdot n \), \(2^n \) would be of order \(p \).

Pick \(x \in G, x \neq 1 \). If \(p \mid |x| \), we're done. Otherwise \(p \mid |G/<x>| \), so by induction, \(\exists y \in G \) s.t. \(|G/<x>| = p \) in \(G/<x> \). So \(y^p \in <x> \) i.e., \(y^p = x^k \) for some \(k \). Write \(|y| = pk + r \) with \(0 \leq r < p \), get \(e = y^{pk+r} = x^{kr}y^r \) so \(y^r \in <x> \Rightarrow r = 0 \), as \(|G| = p \).

So the order of \(y \) is divisible by \(p \). \(\square \)

(A) would have been better to state and prove:

claim: if \(\phi : G \to H \) is a morphism \& \(y \in G \), then \(|\phi(y)| \mid |y| \).

Proof. If \(|\phi(y)| = n \), \(|y| = m \), \(m = nq + r \). Then \(e = \phi(y^n) = \phi(y^{nq})\phi(y^r) = (\phi(y))^q \phi(y)^r = \phi(y)^r \).

So \(r = 0 \).

Theorem. 1. Sylow p-groups always exist: \(\text{Syl}_p(G) \neq \emptyset \).

2. Every p-group is contained in a Sylow-p group.
3. All Sylow-p subgroups of G are conjugate, and

$$N_p(G) = \{ Syl_p(G) \} \equiv 1 \mod p \quad \& \quad |N_p(G)| \mid |G|$$

Groups of order 15.

P_5 is normal in G, P_3 is

normal in G. Any $y \in P_3$ commutes

with P_5 [otherwise $\exists y \mid \text{Aut} P_5 \neq 1$],

$P_5 = \{ y \mid \text{otherwise} \} \mid \text{Aut} P_5 = 1 \}$

Preliminary Lemma.

A group of

order p is \mathbb{Z}/p.

Aside. $N_p \mid |G| \Rightarrow n_p \mid n_1 \quad \& \quad n_1 = 1 \mod p \Rightarrow \frac{n_1}{n_p} = 1 \mod \frac{p}{q-1}$

$(\text{Aside. Aut} \left(\mathbb{Z}/p \right) = \left(\mathbb{Z}/p \right)^* \quad \text{so } |\text{Aut} \left(\mathbb{Z}/p \right)| = \phi(p))$

$x = x^y = y^x \quad \text{for generators } x \in P_5, y \in P_3.$

Aside. If $G = \left< a, b \right>$, $G_1 \cap G_2 = \left< c \right>$, $[G_1, G_2] = \left< c \right>$, then

$G = G_1 \times G_2$

Aside. $\mathbb{Z}/p \times \mathbb{Z}/q = \mathbb{Z}/pq$

This also works for order pq, $p \neq q$ primes, $pq-1$.

Groups of order 21. P_7 is normal, P_3 might not be.

P_3 may act on P_7. If $P_7 = \langle x \rangle$, $P_3 = \langle y \rangle$, we

have $x^y = x^q$ or $x^y = x^q$.

Aside. Aut($\mathbb{Z}/7$) is cyclic; $A = \{ 1, 2, 3, 4, 5 \}$

$\text{Ded. What does this mean?}$

This also works for order pq, $p \neq q$ primes, $pq-1$.

Also did the “extension lemma”.

Lemma. If $P \leq \text{Syl}_p(G)$ & $H \triangleleft \text{N}_p(G)$ is a p-group,

then $H \leq P$.

2. If $P \leq \text{Syl}_p(G), \langle x \rangle = \langle p \rangle$, $x \in \text{N}_p(G)$, then $x \in P$.

Reformulation: $P \leq \text{Syl}_p(G), |H| = p^\beta \Rightarrow H \triangleleft \text{N}_p(G)$

Stronger Sylow 1. If $p^\beta \mid |G|$, then G

has a subgroup of order p^β.

11-1100 Page 3
Proof: Let \(\mathcal{X} = \{ \mathcal{S} \subseteq G : |S| = p^k \} \), and write

\[|\mathcal{X}| = p^{k+1} m \]

with maximal \(\chi \). By counting and binomial nonsense, \(p^k |\chi| \) yet \(p^{k+1} |\chi| \).

\(G \) acts on \(\mathcal{X} \) by translations, so there must be \(s_0 \in \mathcal{X} \) such that \(p^{k+1} |G : s_0|\), hence \(p^B |H = \text{stab}_G(s_0)| \). Yet if \(x \in s_0 \) then \(g \mapsto gx \) is an injection \(H \to s_0 \), so \(|H| \leq |s_0| = p^B \), so \(|H| = p^B \).