* Agenda: Simplicity of A_{n}, group actions.
*Makeup days: Thwsolay at gAM?
Read Along?
* Go over handouts.

Definition A G-set (left-G-set) $G \times X \rightarrow X$
sit. $\left(g_{1} g_{2}\right) x=g_{1}\left(g_{2} x\right), b x=x$. Same as $\alpha: G \rightarrow s(x)$. G-sets are a category !
Examples. 1. G itself, wader Conjugation.
2. Subgraps (G), under conjugation. $\}$ done.

Examples:1. G/H when $1 t$ is not-necesswily normed Sub-example: $\quad S_{n} / S_{n-1} \quad \sigma S_{n-1}=\sigma S_{n-1}$ iff
$\sigma(n)=\sigma(n)$. Let $\tau_{i}(n)=i$, Then
$\sigma \tau_{i} S_{n-1}=\tau_{\sigma} S_{n-1}$. So S_{1} / s_{n-1} is $q / \ldots n y .$.
2. If X_{1}, X_{2} are G-sets, then so is $X_{1} \cup X_{2}$.
3. $s^{2}=50(3) / 50(2)$

Theorem. 1. Every G sat is a disjoint union of "transition G-sots
2. If X is a transitive G set and $x \in X$, then

$$
x \cong G / \operatorname{sta}_{x}(x) \text {. } \text { so }|x|||G|)
$$

Theorem. If X is a G set and x; are representatives of the orbits, then

$$
|x|=\sum_{i} \frac{|G|}{\left|\operatorname{stab}_{x}\left(x_{i}\right)\right|}
$$

Example. If G is a p-group, the centre of G is not empty.

