& Agenda: Simplicity of A_n, group actions.

* Makeup class: Thursday at 9 AM?

Read Along?

* Go over handouts.

Definition. A G-set (left-G-set) $G \times X \rightarrow X$

s.t. $(g_1 g_2) x = g_1 (g_2 x)$, $e x = x$. Same as $\alpha: G \rightarrow S(X)$.

G-sets are a category.

2. Subgroups of G, under conjugation.

Examples: 1. G/H when H is not necessarily normal

Sub-example: S_n / S_n^{-1}, $G \sim S_n^{-1}$ iff

$G(n) \sim G(n)$. Let $\iota; n \sim n$, then

$G(n) \sim n^{-1} S_n^{-1}$. So S_n / S_n^{-1} is $2(\ldots)$

2. If X_1 , X_2 are G-sets, then so is $X_1 \sqcup X_2$.

3. $S^2 \sim SO(3) / SO(2)$

Theorem. 1. Every G-set is a disjoint union of "transitive G-sets"

2. If X is a transitive G-set and $x \in X$, then

$X \sim G / \text{stab}_x (x)$. (So $|X| \leq |G|)$

Theorem. If X is a G-set and x_i are representatives

of the orbits, then

$|X| = \sum \frac{|G|}{|\text{stab}_x (x_i)|}$
Example. If G is a p-group, the Centre of G is not empty.