9:55 PM
Appends dendline mont No class on Tuesday?
Rend Along. Selick 21-23
R. Idle Along. $6(x) = ?$
Agenda. "better ideals".
From now on, R is commutative.
Maxinal Ideals. 1. Definition.
2. ICR is maximal > R/I is a field.
Example. $S = l^2 = \begin{cases} bndd seg's \\ in lk \end{cases}$ $A_n = g(a_i): \alpha_n = 0$
Theorem. Every ideal is contained in a maximal ideal.
Proof using Zorn's LIMMa.
Theorem There exists a Function
Lim: fondd sigs } -> 1K s.t.
1. If (an) is convagant, liman = Liman.
2. Lim (an+bn) = Lim (a) + Lim (bn) + more
2. $Lim(a_n+b_n)=Lim(a)+Lim(b_n)+More$ 3. $Lim(a_nb_n)=Lim(a_n)\cdot Lim(b_n)$
Proof. S= Ebndd Sig's in/Ry I= f(an) in the for many n's g
J-a maximal ideal containing I.
Linis S > S/J = R
- · · · · · · · · · · · · · · · · · · ·

November 3, hour 24: Prime and maximal ideals

Prime Ideals. 1. Definition PCR is prime if abEP
^
=) a EP or b EP.
2. Theorem. R/P is a domain iff P is prime.
Proof => abfp => [ab] =0 => [a][b] =0 => afp
< [A][b]=0 => [A]=0=> ALFP=> OF (A)=0 6FP => [A]=0
Theoren. A maximal ideal is prime.
From this point, R is a Domain (no o- Jivisos)
Primes. 1. a/b (a/b 1 b/a =) a=ub) done
2. $g(d(a, b) = 9$ j $g(d = 4)$ $g(d = 4' = 2)$ $g(d = 4' = 2)$
3. Primes: P=o non-unit Pab => Pla or Plk
p is prime iff is prime iseal.
4. Irreducible DC=ab=) RFR* V bFR*
Claim. prime => irreducible counterexample: in Z[V-5]
p=ab=) PA=) a=PC but not prime, as
=) P=PCb=>Cb=1 =7 ber* 2 (1-15)(1+V-5)=6