Appends deadline noons No class on Tuesday?
Rend Along. Selick 2.1-2.3
Riddle Along. $E(x \rightarrow o x)=$?
Agenda. "bettor ideals".
.... From now on, R is commutative.
Maximal Ideals. 1. Definition.
2. Ic is maximal $\Leftrightarrow R / I$ is a Field.

Example. $S=l^{\infty}=\left\{\begin{array}{c}\text { bond seq's } \\ \text { in } \\ \mathbb{R}\end{array}\right\} \quad A_{n}=\left\{\left(a_{i}\right): a_{n}=0\right\}$
${ }^{\text {Fishy }}$ Theorem. Every ideal is contained in a maximal ileal.
Proof using Zorn's Limma.
Theorem There exists a function
Lin: $\left\{\begin{array}{c}\text { bid seq's } \\ \text { in } R\end{array}\right\} \rightarrow \mathbb{R}$ s.t.

1. If $\left(a_{n}\right)$ is convergent, $\lim a_{n}=\operatorname{Lim} a_{n}$
2. $\operatorname{Lim}\left(a_{n}+b_{n}\right)=\operatorname{Lim}(a)+\operatorname{Lim}\left(b_{n}\right)+\operatorname{mor} l_{\ldots}$.
3. $\operatorname{Lim}\left(a_{n} b_{n}\right)=\operatorname{Lim}\left(a_{n}\right) \cdot \operatorname{Lim}\left(b_{n}\right)$

Proof. $S=\left\{b_{n d d}\right.$ sin's in $\left.\left.\mathbb{R}\right\}\right\}$ J - a maxiond icel containing I.

$$
\operatorname{Lin}: S \rightarrow S / J \frac{\overline{\nu_{0}}}{} \mathbb{R}
$$

Prime Ideals. 1. Definition $N \subset \mathbb{R}$ is prime if ab eP

$$
\Rightarrow a \in P \text { or } b \in P
$$

2. Theorem. R / P is a domain ifs P is prime.

$$
\left.\begin{array}{rl}
\text { Proof } \Rightarrow a b \in P \Rightarrow[a b]=0 \Rightarrow[a][b]=0 \Rightarrow[a]=0 \Rightarrow a+p \\
\leftarrow[a][b]=0 \Rightarrow[a b]=0 \Rightarrow a b \in P \Rightarrow b \in P . \\
{[a b-\sigma]}
\end{array}\right] \begin{aligned}
& a \in \mathcal{P} \Rightarrow[a]=0 \\
& b \in P \Rightarrow[b]=0
\end{aligned}
$$

Theoren. A maximal ideal is prime.
From this point, R is a Domain commentative $\left.\begin{array}{l}\text { no } \\ n_{0} \\ 0\end{array}\right)$
primes.I. $a / b \quad(a / b 1 b / a \Rightarrow a=u b) \quad$ done
2. $\operatorname{gcd}(a, b)=9 \quad ; \operatorname{gcd}=q \& \quad \operatorname{gcd}=q^{\prime} \Rightarrow q^{\prime}=u q$.ing
3. Primes: $P \neq 0$ non-unit $p|a b \Rightarrow p| a$ or $p \mid b$ p is prime iff $\langle\rho\rangle$ is prime ideal.
4. Irreducible $x=a b \Rightarrow a \in R^{*} \vee b \in R^{*}$

Claim. prime \Rightarrow irreducible

$$
\begin{aligned}
& p=a b \Rightarrow p \mid a \Rightarrow a=P C \\
\Rightarrow & p=p c b \Rightarrow c b=1 \Rightarrow b \in R^{*}
\end{aligned}
$$

Counterexample: in $\mathbb{Z}[\sqrt{-5}]$,
2 is irene (for norm racons)
but not prime, as
$2 \mid(1-\sqrt{-5})(1+\sqrt{-5})=6$

